
Tabbed Out: Subverting the Android Custom Tab Security Model

Philipp Beer, Marco Squarcina, Lorenzo Veronese and Martina Lindorfer
TU Wien

Abstract—Mobile operating systems provide developers with
various mobile-to-Web bridges to display Web pages inside
native applications. A recently introduced component called
Custom Tab (CT) provides an outstanding feature to overcome
the usability limitations of traditional WebViews: it shares
the state with the underlying browser. Similar to traditional
WebViews, it can also keep the host application informed about
ongoing Web navigations. In this paper, we perform the first
systematic security evaluation of the CT component and show
how the design of its security model did not consider cross-
context state inference attacks when the feature was introduced.
Additionally, we show how CTs can be exploited for fine-grained
exfiltration of sensitive user browsing data, violation of Web
session integrity by circumventing SameSite cookies, and how
UI customization of the CT component can lead to phishing
and information leakage. To assess the prevalence of CTs in
the wild and the practicality of the mitigation strategies we
propose, we carry out the first large-scale analysis of CT usage
on over 50K Android applications. Our analysis reveals that
their usage is widespread, with 83% of applications embedding
CTs either directly or as part of a library.

We have responsibly disclosed all our findings to Google,
which has already taken steps to apply targeted mitigations,
assigned three CVEs for the discovered vulnerabilities, and
awarded us $10,000 in bounties. Our interaction with Google
led to clarifications of the CT security model in the new Chrome
Custom Tabs Security FAQ document.

1. Introduction

Mobile operating systems offer a variety of mobile-to-
Web bridges that developers can use to integrate Web content
into their native applications. Depending on a combination
of factors, e.g., the operating system (OS, either Android
or iOS), and the installed browser, these components have
different sets of capabilities and privileges [1]. Developers
can provide further customization to match the application’s
theme and minimize the visible disruption between the
native application and the Web content, making it virtually
indistinguishable from the host application. This feature
is particularly attractive for social network and messaging
applications that allow users to open arbitrary URLs directly
within the host application. This can lead to security and
privacy issues, e.g., when these in-app browsing mechanisms
do not present users with adequate security indicators [2].

Yet, even when using standard components provided
by the OS, bridging mobile native applications and Web

content can have unforeseen consequences. Security risks
previously unknown to mobile applications can become a
threat when these components are used, as extensive research
on the Android WebView component has demonstrated [3],
[4], [5], [6], [7], [8]. Furthermore, new attack vectors are
emerging as novel mechanisms and APIs are introduced
to mobile platforms [9]. A widely used yet under-explored
mechanism is the Custom Tab component, which we focus on
in this paper. Custom Tabs (CTs) provide applications with
a seamless way to implement in-app browsing but also come
with two interesting features from a security and privacy
perspective: they share state with the underlying browser,
such as Chrome, other Chromium-based browsers including
Edge and Brave, as well as Firefox, and provide navigation
awareness to the host application through callbacks. These
two features open the possibility for a new class of attacks
that we call Cross-Context Leaks. Similarly to Cross-Site
Leaks (XS-Leaks), which share information across different
sites and represent a strict Web security vulnerability, Cross-
Context Leaks can disclose sensitive information across the
Web and the mobile context, i.e., between the website and
the host application of the Custom Tab.

We perform the first systematic security evaluation of the
Custom Tab component, assuming a potentially unwanted
application (PUA) to be installed on the user’s device, and
show how Cross-Context Leaks, which were not considered
in enough detail when the Custom Tab feature was launched,
can be used to infer sensitive user data from websites, thus
subverting the current security model of Custom Tabs. We
present attacks that can be used to infer coarse-grained
information about a user, such as whether the user is logged in
on a specific website, but also more fine-grained information
that allows to infer the user’s location history. Furthermore,
we demonstrate how HTTP request headers can be injected
into requests initiated by a Custom Tab and how SameSite
Strict cookies can be bypassed. To enable these and further
attacks in a stealthy manner, we also demonstrate how an
attacker can fully hide the Custom Tab browser activity
and the Web content displayed within it. Additionally, we
illustrate how the customization feature of the Custom Tab’s
interface enables phishing attacks.

We present possible mitigation strategies for the attacks
and responsibly disclosed all vulnerabilities to Google
through the Chrome Vulnerability Reward Program. The
Chrome security team assigned three CVEs to the discovered
vulnerabilities and awarded us $10,000 for our reports. We
are further engaging with Google to discuss broader miti-
gations that address core issues of the Custom Tab security

model. In particular, we propose to restrict state sharing with
the underlying browser while preserving compatibility and
offer websites the possibility to opt out of being loaded in a
Custom Tab via standard Web security mechanisms.

To underscore the need for implementing these strategies
and understand whether they break existing functionality, we
analyze the usage of CTs in the most popular applications in
the Google Play Store. We find that their use is widespread:
the vast majority of applications (83%) integrate CTs either
as part of the main application or through third-party libraries
that provide security-critical functionality, such as authenti-
cation, but also frequently for advertisement purposes.

In summary, we make the following contributions:
• We present six new attacks using CTs that allow

potentially unwanted applications to stealthily leak user
browsing data, perform authenticated requests (with
custom headers) on behalf of the user, bypass SameSite
cookies, and carry out phishing attacks (Sec. 3).

• We propose mitigation strategies for the discovered
attacks and discuss possible extensions to Web security
mechanisms, e.g., CSP and Fetch Metadata, to allow
specifying cross-context embedding restrictions (Sec. 4).

• We perform the first large-scale measurement of the
usage of Custom Tabs on over 50K apps with more
than 1M downloads, studying the most used libraries
and characterizing their usage of the Custom Tab API.
We discover that 83% of the analyzed apps use the
component, and the majority of libraries that include
CTs use them for authentication (e.g., OAuth 2.0) or
advertising purposes (Sec. 5).

• We present five case studies of cross-context information
leakage on high-profile websites to demonstrate the real-
world impact of the discovered attacks (Sec. 6).

The artifacts of this work, including the proof of concepts
for the attacks, the source code of our analysis pipeline, and
the measurement results are available at purl.org/ct-paper.

2. Background

The traditional way of opening websites is by loading
them in a standalone browser. However, on mobile platforms,
this approach has usability and functionality limitations
since users are forced to leave the application and switch
to the browser. Developers can thus embed Web content
in their native applications using WebView components,
providing a seamless user experience. Starting from 2015,
Android and iOS added support for Custom Tabs (CTs) [10]
and SFSafariViewController [11], respectively, which
are browser components that can be embedded in native
applications to provide the same browsing experience as the
full browser for in-app browsing. These components allow
apps to launch a browser view for interacting with websites
without leaving the application. In this section, we focus on
Android CTs, being instrumental for the attacks presented
in this paper. We also compare CTs to other components
for embedding Web content on Android and iOS. Table 1
provides an overview of features supported by different
browsers as of April 2023.

Feature ? � x K

v.112 v.112 v.112 v.1.50 v.16.4

State sharing #
Navigation callbacks – –
Scroll callbacks – –
Bottom bar – –
Adding approvelisted headers – –

TABLE 1: Support of selected CT features on Android
(Chrome, Firefox, Edge, Brave) and SFSafariViewController
(Safari) on iOS (supported, # restricted, – unsupported).

2.1. State Sharing

Compared to other components for embedding Web con-
tent, such as WebView [12] on Android, or WKWebView [13]
and SFSafariViewController on iOS, CTs offer a unique
capability: they share state with the underlying browser,
including cookies and permissions. Consequently, when
users log into a website in the browser, they are also
implicitly authenticated in the CT. However, unlike the
WebView and WKWebView components, CTs do not allow
for injecting JavaScript code into the website nor offer a
built-in bridge to expose native functions of the app to
the website. Nevertheless, the website and the native app
can set up a postMessage-based channel that can be used
for bidirectional communication, and apps can listen to
website events via the CustomTabsCallback [14] class,
as discussed next. Additionally, it is possible for an app to
send browser vendor-specific commands to the CT via the
extraCommand [15] function.

2.2. Navigation Awareness through Callbacks

Native applications can track interactions with websites
by registering callbacks. Various types of callbacks are
supported by CTs, such as navigation callbacks that are
triggered during Web navigation events and extra callbacks
that are specific to the browser implementation. Developers
can receive and utilize these events in the host application
by overriding the CustomTabsCallback class. Navigation
callbacks are fired at various stages of the loading process
or when a CT changes its visibility state. More specifically,
the callback mechanism distinguishes between six types of
navigation events [14]:
• NAVIGATION_STARTED when the page starts loading,
• NAVIGATION_FAILED when the page fails loading,
• NAVIGATION_ABORTED when a user cancels the loading,
• NAVIGATION_FINISHED when the page finishes loading,
• TAB_SHOWN when the browser becomes visible, and
• TAB_HIDDEN when the browser becomes hidden.
We discuss details about other types of callbacks, such as
extra callbacks, in the following sections.

2.3. UI Customization and Other Features

CTs provide developers with the ability to tailor the style
of the browser activity to suit the application’s look. This

purl.org/ct-paper

includes the ability to modify the color of the URL bar, apply
enter and exit animations, and add custom actions to specific
buttons in the browser’s navigation bar. Application develop-
ers can also create a bottom bar, a secondary toolbar at the
bottom of the screen, and fully customize its appearance.

Chrome, Edge, and Brave CTs enable the inclusion
of CORS-approvelisted HTTP request headers (including
accept, accept-language, content-language, and
content-type, see Table 6 for the complete list) when
performing the first request to a website. In the presence
of a trust relationship between the host application and the
website, it is also possible to include HTTP request headers
that are not CORS-approvelisted [16]. Digital Asset Links
(DALs) are used to establish this mutual trust relationship.
Websites need to place a statement list file at a specific
location under the /.well-known/ path, which includes
the package names of the trusted applications for the website
and the fingerprints of applications’ signing certificates [17].

Compared to the WebView component, CTs also offer
some performance optimizations. It is possible to pre-
initialize the browser for a seamless integration with the
application by calling the warmup [15] method. Developers
can also provide the browser with a list of URLs that are
likely to be visited using the mayLaunchUrl [18] method
so that the browser can perform speculative work such as
initializing the connection and pre-rendering Web pages.

2.4. Activities and Intents in Android

Activities are fundamental building blocks of Android
applications and provide the visual component for user
interaction. Activities are typically displayed full-screen and
organized in a stack, where only the topmost activity is
visible. An application can consist of multiple activities,
where one activity can start another one by using Intents.

Intents are used for inter-component communication
within the same application and with other applications and
services. Intents can be implicit or explicit, depending on
whether the application specifies a target activity that should
handle it. For example, to open a URL in a browser, an appli-
cation can issue an implicit Intent and can optionally specify
the browser’s package name, e.g., org.mozilla.firefox.
Intents can also include arbitrary extra information as Bun-
dles, i.e., lists of key/value pairs. To request the browser
to open the website in a CT, the application must add the
android.support.customtabs.extra.SESSION string
to the Bundle of the Intent.

3. Subverting Custom Tabs

This section presents the first comprehensive security
evaluation of the Android CT component. We first introduce
the underlying threat model and discuss the core objectives
of an attacker. We then describe our employed methodology.
To make our attacks stealthy, we present two gadgets that
enable an application to hide a CT activity or the Web
content within a CT. Finally, we present six novel attacks
that enable applications to violate the security and privacy

of Web users. Table 2 summarizes the gadgets, attacks, and
affected browsers.

3.1. Threat Model

We consider the classic app attacker model [6], i.e.,
attacks launched by a potentially unwanted application (PUA)
installed on the user’s Android device. The application only
needs the permission to access the Internet. This permission is
considered a normal permission on Android, meaning that it
is already granted at install time and does not require run-time
checks [19]. We also assume that the application is actively
used by the user, i.e., an activity of the application needs to
be in focus. The application can be a privacy-invasive app
that either compromises the confidentiality or the integrity
of user data and uses hiding gadgets to make the attack
stealthy. When compromising confidentiality, a PUA wants
to infer information about the user’s browsing behavior, i.e.,
coarse-grained information, such as whether a user is logged
in on a specific website, or more fine-grained information,
such as the identity of a user. The attacker’s objective in
compromising integrity is to manipulate the user’s browsing
context, such as by swapping the user’s existing sessions on
websites or carrying out unauthorized actions. Additionally,
the application can disguise itself as a legitimate and useful
app to lure users into installing it. It is also plausible that
an attacker operates a software development kit (SDK) that,
when integrated as a library in a benign application, turns it
rogue [20], [21].

3.2. Methodology

In order to study the security of CTs and uncover novel
attack vectors, we employed the following methodology:
First, we studied the available CT documentation to identify
any potential design flaws in the component. Because this
step only allowed us to cover documented functionality,
we manually reviewed the Chromium source code to find
yet undocumented APIs and also to detect discrepancies
between the implementation and the documentation. This
was then followed by manual API testing, e.g., mutating API
parameters and triggering edge cases, which was instrumental
in verifying our assumptions about the implementation. We
then matched the observed behavior against Web standards
to find potential violations and gray areas. When discovering
a new attack, we implemented proof of concepts to validate
our claims, performed additional testing to fully understand
its capabilities and impact, reported the vulnerability, and
engaged with the affected vendors to identify compatible
mitigation strategies. We will detail these additional tests in
the corresponding sections. Table 3 shows how each step of
our methodology contributed to identifying the gadgets and
attacks proposed in this paper.

3.3. Custom Tab Hiding Gadgets

When a CT is opened by an application via the
launchUrl method, a CT activity is launched. The activity

Gadget/Attack ? � x Stealth Affects Reason
v.112 v.112 v.112 v.1.50

Gadget CT Activity Hiding () - - - CT activity overlain with another activity
Web Content Hiding () - - - Bug in height restriction of bottom bar

Attack

State Inference Attack - C Reporting of navigation callbacks (by design)
HTTP Header Injection <v.108 - <v.108 <v.1.46 I Improper sanitization of HTTP header values
SameSite Cookie Bypass <v.109 - <v.110 <v.1.48 I Sending SameSite Strict cookies (by design)
Scroll Inference Attack - - C Reporting of scroll callbacks (by design)
Bottom Bar Info Leakage - C URL in bottom bar Intent (by design)
Bottom Bar Phishing - - C Existence of bottom bar (by design)

TABLE 2: CT gadgets, attacks, and vulnerable browsers on Android (vulnerable, can be combined with CT Activity
Hiding gadget, can be combined with Web Content Hiding gadget, C confidentiality, I integrity). Note that Firefox
supports CTs but it is not vulnerable to any of our attacks.

Methodology Step Identified Attacks/Gadgets

Review of documentation

CT Activity Hiding gadget
Cross-Context State Inference Attack
Bottom Bar Info Leakage
Bottom Bar Phishing

Review of source code Scroll Inference Attack

Manual API testing
Web Content Hiding gadget
HTTP Header Injection

Cross-check of Web standards SameSite Strict Cookie Bypass

TABLE 3: Identified attacks/gadgets by methodology step.

is launched either full-screen or, more recently, as a bottom
sheet in the lower part of the screen, but cannot be started in
the background or closed without explicit user interaction. In
this section, we therefore present two techniques that enable
an application to hide a CT activity or the Web content within
a CT. While these techniques may not pose severe threats to
the user’s security and privacy when viewed in isolation, they
can be used as gadgets to perform other attacks stealthily,
thus acting as enablers for more impactful attacks.

3.3.1. Custom Tab Activity Hiding. To fully hide a CT, an
attacker can use CT callbacks. CTs offer the CustomTab-
sCallback class and the onNavigationEvent function to
notify the launching application about Web navigation events.
The TAB_SHOWN event is fired when the CT becomes visible.
Attackers can stealthily launch CTs as shown in Fig. 1: (1)
Activity A of the unwanted application launches the CT with
the target website. (2) Activity A listens to the TAB_SHOWN
event of the CT and launches activity B as soon as the event
is received. (3) At this point, even if activity B is in the
foreground, future callback events are still reported to activity
A. One aspect that needs to be considered is the activity
back stack. The back stack stores the activities according to
the order in which they are opened. If the user presses the
back button or performs the back gesture, the activity at the
top of the stack is removed, and the CT is displayed [22].
To overcome this shortcoming, applications can overwrite
the onBackPressed function in the overlaying activity. By

Activity A
Malicious Application

example.com

Custom Tab

example.com

Activity B
Unwanted Application

Activity B

Activity A

Activity A
Unwanted Application

Activity A

Activity A
Malicious Application

Activity A

example.com

Custom Tab

example.com

(1) (2)

Background

Foreground

(3)

Figure 1: Using the CT Activity Hiding gadget to hide the
CT by overlaying it with another activity.

doing so, the previous activity A can be relaunched instead
of bringing the CT into the foreground.

Another way to hide the CT is to overlay it with the
same activity that launched it. That is, activity A launches a
CT that is then overlaid by activity A. This technique can,
for instance, be employed during video playback. While the
user is watching a video in activity A, a CT is launched
but immediately hidden by activity A, providing the user
with an uninterrupted video experience. Note that while the
video is playing, UI controls are unresponsive for a short
time during the CT launch.

Multiple CTs can be opened in a single run, i.e., in one
activity transition. This can be achieved by launching CTs
in sequence, each triggered by the TAB_SHOWN event of the
preceding CT, and opening the overlay activity when the
TAB_SHOWN event of the final CT is fired. Note that the
overlay activity is visible only after all CTs are opened and,
as with the previous method, the UI becomes unresponsive
during the attack.

Performance. We evaluate the stealthiness of the CT Activity
Hiding gadget, thus the impact of such unresponsiveness, by
measuring the performance of the gadget. In particular, we
launch multiple CTs in parallel and measure the time it takes
from the beginning of the attack until the UI is responsive
again. We test the technique on a Google Pixel 6a running
Android 13 and Chrome 112, repeating the experiment 50
times. The results are provided in Fig. 2. Opening a single
CT leaves, on average, the UI unresponsive for 0.2s, while
launching 10 parallel CTs takes about 1.7s. Note that up

1 2 3 4 5 6 7 8 9 10
Parallel CTs

250

500

750

1000

1250

1500

1750

D
ur

at
io

n
[m

s]

Mean

Figure 2: Execution duration of the Activity Hiding gadget
(n = 50). The UI is unresponsive during this time period.

to 5 CTs can be opened within one second, thus allowing
to probe 5 websites within a delay that would not raise
suspicion among most users.

3.3.2. Web Content Hiding. To hide the Web content
rendered in a CT, an application can take advantage of the
bottom bar. Although the maximum height of the bottom bar
is limited, we discovered that embedding a larger element
into the bar can hide the website’s content. This technique
does not make it possible to include custom elements outside
the bottom bar area, but it creates an overlay of the same
color as the website’s background over the Web content.
Notice that this overlay does not prevent the website from
being scrolled.

In addition to hiding the Web content, an application
can alter the information displayed in the navigation bar
of the CT. The share button can be removed by calling
the setShareState method with the SHARE_STATE_OFF
constant, and the close button can be hidden by setting
a transparent icon via the setCloseButtonIcon method.
Moreover, on Chrome and Brave, changing the navigation bar
color via the setToolbarColor method so that it matches
the color of the padlock icon results in effectively hiding the
icon. Surprisingly, on Edge, explicitly assigning a color to
the navigation bar causes the hostname to disappear, leaving
only the lock icon visible. This technique is shown in Fig. 3,
where we additionally spoofed the content of the bottom bar
to look like part of the website.

3.4. Cross-Context State Inference Attack

CTs share state with the underlying browser, including
cookies, Service Workers, caches, etc. As a result, if a
user is authenticated on a website in the browser, they are
also authenticated in a CT opened by the same browser.
Additionally, CTs provide a callback mechanism that keeps
the launching application updated on navigation events, such
as when a navigation starts, fails, finishes, or is canceled.
We refer the reader to Sec. 2.2 for a comprehensive list
of events. This combination of shared state and callbacks
can be exploited by an application to infer sensitive user
information, thus compromising the confidentiality of user

(a) Chrome 112 (b) Edge 112 (c) Brave 1.50

Figure 3: Web Content Hiding using the bottom bar. It
contains custom UI elements to draw the user’s attention.

data. By opening a target website in a CT and listening
to these callbacks, an attacker can infer the user’s state
on the website based on the sequence, timing, and type of
the fired navigation callbacks. This attack is comparable
to an emerging class of attacks called cross-site leaks (XS-
Leaks) [23], which uses a cross-site oracle to distinguish
between different states on a website and to leak user
information. In contrast to XS-Leaks, the callback mechanism
serves as an oracle to leak information between the mobile
and the Web context, making it a cross-context leak.

3.4.1. Attack Vectors. By experimentally testing combina-
tions of HTTP status codes and headers1, we have identified
five attack vectors to infer user information on a target
website. For all the techniques, an application launches the
target website in a CT and analyzes the callback events.
Although this section provides examples of information
leakage, such as inferring a user’s authentication status or
whether they have previously visited a website, it is important
to note that the attack is not restricted to these scenarios.
Depending on the website, the attack can be used to infer any
state that causes a different sequence of navigation events
or timing, including the presence of a specific item in a
shopping cart, whether the user is logged in with a specific
user account, or reconstructing the social graph of a user.

Status Code. The status code-based attack is enabled
by how CTs handle HTTP response status codes. Our
experimental evaluation showed that an HTTP response
with status code 4xx/5xx and an empty response body
triggers a NAVIGATION_FAILED event directly followed
by the NAVIGATION_FINISHED event. On the other hand,
2xx/3xx status codes, irrespectively of the response body,
or 4xx/5xx with a non-empty response body, only fire the
NAVIGATION_FINISHED event. The conditional presence of
the additional NAVIGATION_FAILED event can be used to

1. We tested combinations of status codes (200, 3xx, 4/5xx), response bod-
ies (empty, non-empty, redirection), content-type (video/mp4, audio/mpeg,
application/pdf), and content-disposition (inline, attachment).

infer a user’s information on a target website. For instance,
an attacker can request a resource that is only accessible by
authorized users and check for the NAVIGATION_FAILED
event. If the event is fired, the user is not authenticated. Since
this attack technique only works when an empty response
body is transmitted on status code 4xx and 5xx, the real-
world impact of this method is significantly reduced.
Redirection. An attacker can also infer user information by
checking whether requesting a specific resource triggers a
redirection. This resource can be, for instance, the login page
of the target website that automatically redirects the user
to the home screen when authenticated. Another possibility
can be a restricted resource that redirects the user to the
login page when not authenticated. This allows an attacker
to determine if the user is authenticated on the target website.
Websites that redirect users to another page for giving consent
to third-party cookies on the first visit also enable an attacker
to probe if a user has accepted cookies and, hence, whether
they have visited the website before. Our experiments on
the CT component showed that the NAVIGATION_STARTED
and NAVIGATION_FINISHED events are fired on redirection
when HTML or JavaScript redirection is used, i.e., when
the page is loaded with a <meta> tag with the http-equiv
and content attributes [24], or when window.location
is set. Redirections caused by HTTP response headers in the
3xx range only fire the initial NAVIGATION_STARTED and
NAVIGATION_FINISHED events. Consequently, if the login
page example.com/login redirects to the landing page
example.com/home using HTML or JavaScript redirec-
tions, two NAVIGATION_STARTED and, respectively, also two
NAVIGATION_FINISHED events are fired — one for each
page. When HTTP redirection is used, only the initial NAVI-
GATION_STARTED and NAVIGATION_FINISHED events are
fired. Websites employing HTTP redirection are thus not
affected by the redirection-based attack vector.
Download. Another way to determine the user’s state on a
website is by a download-based approach. When a resource
that triggers a download is accessed, the CT on Chrome,
Edge, and Brave triggers the NAVIGATION_ABORTED, but
not the NAVIGATION_FINISHED event. The CT then au-
tomatically downloads the resource and displays a silent
notification, i.e., the notification does not trigger a pop-up
but only results in showing a download icon in the device’s
status bar. When a resource is launched in the CT, the firing of
the NAVIGATION_ABORTED event indicates that the resource
was downloaded. If any other event is fired, the resource
was not downloaded.
Content Type. The behavior of CT callbacks on Chrome,
Edge, and Brave also depends on the Content Type of
the resource that is fetched. We experimentally discovered
that resources with media type video/mp4, audio/mpeg,
and application/pdf trigger the NAVIGATION_ABORTED
event, despite being successfully loaded in the CT. On
the other hand, images and other Content Types such as
text/html do not trigger this event. The presence of
the NAVIGATION_ABORTED event can be exploited by an
attacker to determine the state of a user on a website

whenever a resource with a specific Content Type is only
accessible by authenticated users.

Timing. In addition to the attack vectors mentioned above,
CTs also leak information through timing-based attacks
by measuring the time interval between the NAVIGA-
TION_STARTED and NAVIGATION_FINISHED events. This
technique relies on the assumption that the loading time of a
specific resource in the CT is dependent on the user’s website
status. This is a valid assumption for two reasons. First, the
website server may need to perform additional computation
under an authenticated session, e.g., fetch resources from the
database, which increases the loading time [25]. Second,
browsers significantly reduce the loading time of pages
containing cached assets, making it possible to determine
whether a user has already visited a website [26]. Chrome,
Edge, and Brave’s partitioned cache [27] handles caches on
a top-level frame basis. Therefore, cached resources like
the image example.com/popular.png that is embedded
in a.com/index.html are specific to that website and
not reusable when embedded in b.com/index.html. This
approach effectively eliminates false positives in which a
website with an unvisited status includes resources from
visited websites and gets classified as visited. The timing-
based attack vector can also be used in the presence of
HTTP redirections, depending on the user’s state. Even
though HTTP redirections cannot be identified by using the
redirection-based attack, every redirection adds a round-trip,
which affects the loading time.

3.4.2. Stealthiness and Performance. All attack vectors
discussed in this section can be combined with the CT
Activity Hiding gadget described in Sec. 3.3.1. Thus, one
website can be stealthily probed in 0.2s, while probing 10
websites takes about 1.7s.

Concerning the timing-based attack, an application may
need to compare the measured time via CTs against a baseline
value when the user is not authenticated or has never visited
the target website. Notice that a fixed baseline value is
not sufficient due to various factors affecting loading time,
such as network speed. To do so, it is possible to load the
target website in a hidden WebView in the application, mea-
sure the loading time using the onPageLoadStarted and
onPageLoadFinished functions in the WebViewClient
class and compare it to the loading time in the CT. Since
WebViews do not share state with the browser, the user is
surely not authenticated in them, nor has the user visited the
target website before.

3.4.3. Advantages Over Traditional XS-Leak Attacks. It is
important to stress that opening a website in a CT represents a
top-level navigation. Many modern Web security mitigations,
such as SameSite cookies, X-Frame-Options [28], the
frame-ancestors CSP directive [29], and Fetch Meta-
data [30] are designed to restrict cross-site and cross-origin
interactions. The CT attack vectors we presented, however,
are not cross-origin attacks but cross-context attacks and can
infer user-dependent information by performing top-level

navigations. In the following, we discuss distinct advantages
of the CT attack compared to traditional XS-Leaks.
Framing Protection (XFO and CSP). Employing response
headers that restrict whether a resource can be embedded
in an attacker’s website, such as X-Frame-Options (XFO)
(set to DENY or SAMEORIGIN) and Content-Security-
Policy (CSP) (frame-ancestors directive) headers do
not prevent the CT attack. These headers only prevent
embedding cross-origin resources in a malicious website,
e.g., using the <iframe> tag.
Fetch Metadata. The Fetch Metadata HTTP request headers
provide the context of the HTTP request to the server. The
server can use the context to determine whether the request
is legitimate or should be blocked. This allows site operators
to deploy a Resource Isolation Policy [30] or a Navigation
Isolation Policy [31] to protect critical endpoints from a range
of attacks, including Cross-Site Request Forgery (CSRF) [32]
and XS-Leaks. The Sec-Fetch-Site header informs the
server about the relationship between the origin of the request
and the target resource. The header supports the same-
origin, same-site, none, and cross-site values. The
Sec-Fetch-Mode header specifies the mode of the request,
such as whether it is a top-level navigation request, a CORS
request, etc. Until Chrome 109, HTTP requests from a CT
were indistinguishable from top-level navigation requests
with respect to the Fetch Metadata headers, except for the
missing Sec-Fetch-User=?1 header. Thus, Resource Isola-
tion Policies and Navigation Isolation Policies employed on
the server could not distinguish malicious requests initiated
via CTs from legitimate ones. Starting from Chrome 110, as
a result of an independent bug report related to a vulnerability
we previously disclosed to Google (see Sec. 4.3), the Sec-
Fetch-Site header on requests initiated by CTs is set
to cross-site instead of none. We discuss additional
protections based on Fetch Metadata in Sec. 4.1.1.
SameSite Cookies. SameSite cookies are a popular mitiga-
tion against XS-Leaks as they restrict authenticated requests
to same-site navigations. The SameSite attribute can be set
to Strict or Lax to prevent cookies from being attached to
cross-site requests [33]. Popular browsers, including Chrome,
Edge, and Brave, set the default value to Lax if not specified.
Our CT attack vectors are not affected by SameSite Lax
cookies, as they are attached to top-level navigations. We
elaborate on additional capabilities of bypassing SameSite
cookies, including Strict ones, in Sec. 3.6.

3.5. HTTP Header Injection

As mentioned in Sec. 2.3, Chrome, Edge, and Brave
CTs allow to add CORS-approvelisted HTTP headers to
CT requests in the presence of a DAL. We discovered that
Chrome, Edge, and Brave do not properly sanitize the values
of the HTTP headers that are added. Thus, applications could
add arbitrary HTTP request headers (including non-CORS-
approvelisted headers) to requests initiated by CTs, even
when the relationship between the website and the unwanted
application is not verified, compromising the integrity of

the user’s browsing session. Attacker-defined HTTP headers
can be forced into a CORS-approvelisted HTTP header by
setting the value of the permitted header to "\n<Forbidden-
Header>: <value>". For instance, a Cookie header can
be injected by adding the permitted sec-fetch-ua-full
header to the CT request and setting its value to \nCookie:
secret=cookie. This vulnerability was fixed in Chrome
109, Edge 109, and Brave 1.47.

3.5.1. Web Security Implications. Injecting non-CORS-
approvelisted HTTP request headers on cross-context re-
quests to third-party origins can have unforeseen conse-
quences. This is primarily due to the fact that CTs share
state with the underlying browser. The attack can also be
combined with the CT Activity Hiding gadget in Sec. 3.3.1,
making it fully stealthy. In the following, we discuss the
security issues introduced by this attack.
Session Instantiation and Swapping. An application can set
the Cookie header to authenticate the victim on a benign
website. By setting the session cookie of the attacker in
the CT request, the attacker can sign the victim into their
account. This is similar to the Login CSRF attack proposed
by Barth et al. [34]. User activities are then performed
on behalf of the attacker, e.g., the user enters their credit
card details on the legitimate website opened in the CT but
is signed in with the attacker’s account. In this way, the
attacker gains knowledge of the user’s credit card details.
Similarly, the Authorization header [35] can be abused
for session swapping, as it typically authorizes access to
specific resources or authenticates a user on a server, e.g.,
by using a bearer token [36].
Origin Spoofing. An attacker can add the Origin header
and spoof another site’s origin. This can be used for CSRF
attacks on websites that check the Origin of the request for
CSRF mitigation, as further described below.
Cross-Site Request Forgery. The non-standard request head-
ers X-HTTP-Method, X-Method-Override, and X-HTTP-
Method-Override are used to declare that the request
should be treated by the server as if it was issued with
a different HTTP method than the original request [37]. For
example, a GET request containing the X-HTTP-Method:
POST header is treated as a POST request if the server/middle-
ware supports one of these headers. Attackers can issue a GET
request in a CT and set the method override header to indicate
that the GET request should be treated as another request
method, e.g., as a POST or DELETE request. An attacker can
then make state-changing requests on the victim’s behalf,
possibly logging users in/out or performing transactions on
e-commerce websites, assuming that protection against CSRF
attacks is enforced by Origin checking, SameSite cookies,
or custom headers.

3.5.2. Limitations. Not all HTTP request headers can be
injected. If the original request already contains certain
headers, such as Cookie, injecting these headers does not
affect their value in the request. The full list of headers that
cannot be injected or can only be injected if not already

present in the original request can be found in Sec. A.
Furthermore, since the size of each extra CORS-approvelisted
header is limited to 128 characters, injected headers can only
contain at most 127 characters after the newline character
\n used for the attack.

3.6. SameSite Cookie Bypass

The SameSite cookie attribute can be used to restrict
whether a cookie should be attached to cross-site requests
and plays a crucial role in preventing cross-site attacks such
as CSRF and XS-Leaks. Despite being one of the most
impactful security mechanisms to mitigate cross-site integrity
and confidentiality abuse, the Lax attribute does not prevent
cookies from being attached to top-level navigations, such
as opening the target website via the JavaScript function
window.open or via CTs as discussed earlier. Security-
critical websites can use the Strict value to restrict cookies
exclusively to same-site navigations and user-initiated top-
level requests, at the expense of compatibility issues with
SSO and other common cross-site use cases.

We discovered that the initial request that results from
loading a website in a CT attaches SameSite cookies, even
if they are marked as SameSite=Strict. This poses a
significant security risk, even more so in combination with
the CT Activity Hiding gadget, as it allows an attacker
to silently perform cross-context authenticated requests to
potentially critical endpoints. Note that according to a recent
study by Khodayari et al. [38], over 10% of websites expose
state-changing endpoints to GET requests.

Sending SameSite Strict cookies in CTs does not
strictly violate the cookie standard [33], which does not
specify a clear semantics for cross-context interactions:

If the ”SameSite” attribute’s value is ”Strict”,
the cookie will only be sent along with ”same-
site” requests. [. . .] Same-site cookies in ”Strict”
enforcement mode will not be sent along with top-
level navigations which are triggered from a cross-
site document context.

Although CTs represent a top-level navigation, they are
triggered from a third-party context, making them similar to a
cross-site document-initiated request and, therefore, untrusted.
After disclosing the vulnerability, the issue was fixed in
Chrome 110, Edge 111, and Brave 1.49 (see Sec. 4.3).

3.7. Scroll Inference Attack

In this section, we describe a more fine-grained cross-
context leak compared to the attack in Sec. 3.4. This attack
allows us to infer the presence of arbitrary strings on the
page of a website opened via CTs, thus compromising the
confidentiality of user data. Similarly to the State Inference
attack, this attack can be used to detect a specific state of
the user on a website, e.g., if the user is authenticated by
searching for the occurrence of the Logout string. However,
it can also be used to determine whether a user searched
for a specific term on a search engine or whether medical
reports of the user contain certain keywords.

Chromium-based browsers support URL Fragment Text
Directives [39] for specifying a string in the URL frag-
ment that the browser emphasizes on the page. Adding
#:∼:text=<string> to the URL highlights matching
strings on the page and scrolls to the first occurrence if it
is located in a non-visible portion of the page. Furthermore,
CTs offer the extraCallback callback. According to the
documentation [14], this function is used to receive callbacks
that are provided by the specific browser implementation. We
experimentally found that Chrome, Edge, and Brave use this
callback to fire the onVerticalScroll event whenever the
user vertically scrolls within the CT. The event also includes
the scroll direction. When the maximum scroll position on
a website is increased by a user scroll, i.e., when the user
scrolls further than they have scrolled before, the browser
fires an onGreatestScrollPercentageIncreased event
containing this maximum scroll position, where 0 refers to
the beginning of the page and 1 to the end of the page.
Querying this position can also be achieved by calling the
extraCommand function. The maximum scroll position is
not updated, and events are not fired when an automatic scroll
is performed. Note that the scroll APIs required for this attack
are only enabled if the Help improve Chrome’s features and
performance feature on Chrome and the Optional diagnostic
data feature on Edge is enabled. These are, however, the
default values.

The URL fragment text directive, the callbacks we
discussed, and the Web Content Hiding gadget (Sec. 3.3.2)
can be combined to stealthily infer whether a specific string
is present on a website. To do so, an attacker opens a website
in a CT and includes the target string in the URL’s fragment
text directive. Using the Web Content Hiding gadget, they
hide the opened Web page from the user. If the string is
found on the page, the browser automatically scrolls to
the position where the text occurs. Then, the user can be
lured into scrolling up within the CT by, e.g., showing a
message in the bottom bar that instructs the user to perform
a swipe-down, as shown in Fig. 3. When the user swipes
down, the onVerticalScroll event is triggered, indicating
that a scroll up was registered. If this event is followed
by the onGreatestScrollPercentageIncreased event,
the maximum scroll position was increased, even though no
scroll down was performed. This indicates that the initial
scroll position was not at the beginning of the page. Hence,
the browser performed an automatic scroll and the fragment
text appears on the page. If, however, the event is not fired,
the initial scroll position is at the top of the page; thus, the
text segment could not be found.

3.8. Bottom Bar Spoofing

In addition to being an enabler for the Web Content
Hiding gadget, the bottom bar can be abused to introduce
other security and privacy threats. More specifically, we
identified two problems: leakage of user information and
phishing. The root cause of both threats is the lack of
visual feedback that allows users to understand whether
the bottom bar is part of the webpage or belongs to the

(a) Information leakage using
a cookie banner and the Web
Content Hiding gadget (Edge
112).

(b) Phishing using a change
password prompt (Chrome
112).

Figure 4: Attacks that make use of the Bottom Bar Spoofing.

native application: indeed, despite appearing as a component
of the currently opened Web page, the bottom bar is under
full control of the attacker. Although Android’s WebView
also allows mixing Web content with native UI components,
the setting is different. The state in a WebView is not shared
with a browser, thus, the risk of extracting sensitive user data
or performing targeted phishing is lower compared to CTs.

3.8.1. Information Leakage. An application can declare that
a CT should send an Intent if (some part of) the bottom bar
is clicked. This Intent also includes the URL of the website
that is currently open. While this feature offers a convenient
way for the launching application to get informed about the
activities of the user in the CT, it also acts as a side channel to
infer user information. An attacker can customize the bottom
bar to appear as a notification that is part of the website,
such as a cookie banner, to trick the user into clicking on it.
An example of such a bottom bar that masquerades itself as a
cookie banner is shown in Fig. 4a. As soon as the cookie bar
is clicked, the full URL of the website in the CT, including
query parameters and the URL fragment, is transferred to
the hosting application. This attack can be used, e.g., to
deanonymize a user on a specific website, access Personally
Identifiable Information (PII), or extract session identifiers
and authentication tokens from the URL.

3.8.2. Phishing. The bottom bar can also be used for
phishing purposes. When an application loads a CT with
a website where the user is authenticated, the personal
information displayed on the page, e.g., the user’s username
or profile picture, serves as a trust anchor for the user. By
showing a prompt in the bottom bar that fits the current
context of the website, the application can lure the victim
into following the actions listed in the prompt, such as
clicking on the bar, causing a redirection to a website where
the actual exfiltration of user’s data takes place. Similar to
the former attack, the bottom bar is not visibly separated

from the rest of the Web content and appears to be part of
the website. Fig. 4b shows an example of such a phishing
attack, which we detail as a case study in Sec. 6.

4. Mitigations

In this section, we propose and discuss strategies to
mitigate the attacks we introduced in Sec. 3. As some of
the mitigations are not limited to a specific attack, we first
discuss cross-attack mitigations. We then present proposals
targeting specific attacks that we have identified. A summary
of these mitigation strategies can be found in Table 4.

4.1. Cross-Attack Mitigations

The mitigations discussed in this section aim to address
core issues that we identified in the security model of CTs
and thus serve as mitigations for all proposed attacks. One
problem involves the lack of a mechanism for websites
to prevent embedding from CTs. The other issue is the
unrestricted state sharing between the CT and the browser.

4.1.1. Custom Tab Embedding Policies. Website operators
are provided with standard mechanisms to specify embedding
rules for the websites they own. Popular approaches include
the Content Security Policy (CSP) [40] that obsoletes the
X-Frame-Options header [28] and the Fetch Metadata
headers [30]. However, websites have no way to opt-out
from being displayed in a CT. By opting-out of being
loaded in a CT, websites can prevent cross-context leaks
targeted against them. Also, the proposed phishing attack
is mitigated, since by disallowing the website to be loaded
in a CT, the website cannot be used as a lure and a trust
anchor, thus making the attack less useful. We propose two
concrete implementations for this opting-out mechanism,
namely by extending the CSP and the Fetch Metadata
headers. Even though we frame these mitigations for CTs, the
approach discussed in this section can be easily generalized
to WebViews and other Web embedding components for
mobile applications. Following our responsible disclosure
process, we are currently discussing some of these proposals
with the Google Chrome Security team and plan to engage
with standardization bodies as a next step.
Extending Fetch Metadata Headers. Fetch Metadata
defines a set of HTTP request headers that browsers
are required to attach to outgoing HTTP requests to
provide additional context. Servers can take advantage
of these headers to make informed security decisions on
whether a request must be blocked or not by implementing
standard policies. Among the available headers, Sec-
Fetch-Dest [41] specifies the destination of the request,
including information on the embedding context of the
request, e.g., the header is set to iframe when the
request originates from an HTML <iframe> tag. We
propose to extend the list of directives supported by this
header with the webview keyword for HTTP requests
originating from a CT. Provided with additional context,

C
T

op
t-

ou
t

R
es

tr
ic

t
st

at
e

sh
ar

in
g

R
es

tr
ic

t
na

vi
ga

tio
n

C
B

s

R
es

tr
ic

t
C

B
s

in
ba

ck
gr

ou
nd

R
es

tr
ic

t
sc

ro
ll

C
B

s
&

co
m

m
an

d

R
es

tr
ic

t
bo

tt
om

ba
r

he
ig

ht

Sa
ni

tiz
e

bo
tt

om
ba

r
In

te
nt

U
R

L

O
m

it
Sa

m
eS

ite
St

ri
ct

co
ok

ie
s

H
ea

de
r

sa
ni

tiz
at

io
n

State Inference G# # - - - - -
Header Injection G# - - - - - -
SameSite Cookie Bypass G# - - - - - -
Scroll Inference G# - - # - - -
Bottom Bar Leak G# - - - - - -
Bottom Bar Phishing G# - - - - - - -

TABLE 4: Comparison of mitigation strategies (prevents
attack, G# prevents attack only if opted-out, # only prevents
stealthy attack).

Web servers can then determine how to handle the request.
For example, the server may choose to apply additional
security measures, such as requiring authentication or
authorization, before returning the requested resource to
the client. If the server identifies a security risk associated
with rendering content within the CT and determines that
redirecting to a stand-alone browser window is a safer
alternative, it is also possible to break out of the CT and
force-open a stand-alone browser window by leveraging
an HTTP redirect. This can be achieved in Android CTs
by setting an Intent in the Location header, such as
intent://<redir_website>#Intent;scheme=https;
end, which opens the given URL in the default browser.
Extending CSP. The Content Security Policy (CSP) is a
broad Web security mechanism that can be used to allow-
list the resources to be loaded in a Web page. Additionally,
the frame-ancestors [29] directive defines the embedding
policy for a page, i.e., whether the CSP-protected page can be
embedded by another website via the <iframe> HTML tag
or other methods. Similarly, we propose a new CSP directive
called webview-embed to prevent unwanted embedding of
a page in a CT. The directive may take the following values:
• deny: the page is not allowed to load in a CT;
• trusted: the page is only allowed to load in a CT if a

relationship with the website and the host application can
be established, e.g., using Digital Asset Links (DALs);

• allow: the page is allowed to load in any CT (default).
By providing developers with more granular control over the
behavior of their Web pages in CTs, the webview-embed
directive can help mitigate the security risks associated with
the component. In particular, the trusted value of the
webview directive can be used to ensure that sensitive data or
functionality is only accessible within a trusted environment,
reducing the risk of data leakage.

4.1.2. Restrict State Sharing. Compared to WebViews,
CTs have the distinctive feature of sharing the state with the

underlying browser. This allows users to benefit from browser
features, such as the password manager, and seamlessly
authenticate on websites where an active session is in place.
However, this feature also opens the door to attacks that
exploit the shared state, such as the Cross-Context State
Inference attack, or allow the website to serve as a trust
anchor for phishing attacks. To mitigate the issues that we
have identified, we propose to open websites in a private
browsing context by default. To reduce the impact on user
experience, the CT APIs could be extended to support a
permission dialog that explicitly requires users’ approval
to enable state sharing with the browser. Furthermore, the
dialog could be bypassed, i.e., no user interaction is required,
in presence of a DAL asserting a trust relationship between
the native app and the website. We noticed that the SFSa-
fariViewController component on iOS, which can be
considered the iOS counterpart of CTs, is already following
a similar behavior to the one we propose by requiring user
mediation to enable state sharing. However, no way to share
state automatically (e.g., via DALs) is currently supported.

4.2. Attack-Specific Mitigations

Unlike cross-attack mitigations, which protect against a
range of security and privacy issues, this section discusses
fixes on the individual attack vectors that we identified.
Restricting Navigation Callbacks. As navigation callbacks
represent an inherent attack vector for cross-context informa-
tion leakage, we propose restricting them. While completely
eliminating these callbacks would disrupt existing usage
in apps, as we assess in our measurement of real-world
CT usage in Sec. 5, we can mitigate the impact on benign
applications by reducing the granularity of shared information
with the host application. This can be realized by grouping all
the finished navigation events (including errors) into a single
one. Alternatively, navigation callbacks could only be allowed
in the presence of a Digital Asset Link (DAL). Additionally,
a random delay before the callbacks are triggered would
reduce the usefulness of the timing-based side channel.
Restricting Background Callbacks. Another possible miti-
gation strategy for the Cross-Context State Inference attack in-
volves restricting callbacks to CTs that are in the foreground.
Although this strategy would not entirely prevent attacks, it
would hinder apps from launching them stealthily. Since CTs
are designed to display content for active user interaction,
we do not foresee legitimate use cases where a hidden CT
would need to receive callbacks. Therefore, this mitigation
does not introduce significant compatibility problems.
Restricting Scroll Callbacks and Extra Command. Allow-
ing third-party applications to receive scroll events within the
Web context is, as we have shown, not secure. To prevent
this type of attack, one solution is to disable the scroll
callbacks and additional commands that enable querying the
scroll behavior. Similar to restricting navigation callbacks,
browsers could also only enable this functionality on websites
and applications for which a DAL is in place. Google took a
more fine-grained approach to mitigation by only disabling

scroll callbacks when a text fragment is part of the URL.
Furthermore, they implemented enabling scroll callbacks
only after a scroll down is registered, thus making it harder
to determine the initial scroll position on the page.
Restricting Bottom Bar Height. The Web Content Hiding
gadget stems from the fact that the height of the bottom
bar can cover the entire viewport, thus hiding the content of
the page. Preventing the bottom bar from overlapping the
page content would thus make the Scroll Inference attack
not stealthy anymore.
URL Sanitization in Bottom Bar Intents. URLs can
contain PII and other sensitive data. Removing the URL
from the Intent that is sent to the application when the
bottom bar is clicked prevents the Bottom Bar Spoofing attack
(Sec. 3.8). To ensure compatibility with existing applications
making use of this feature, a compatible solution would be
to sanitize the URL before sending it to the application to
strip sensitive data, e.g., by keeping only the origin. Notice
that this approach would still allow the application to infer
the origin of the page visited by the user, which could still
raise privacy concerns.
Omitting SameSite Strict Cookies. Loading a website in
a CT causes a cross-context request between potentially
untrusted parties. This is similar to loading a website in a
browser pop-up from a cross-site position. Being a top-level
navigation, SameSite Lax cookies should be transmitted, but
Strict cookies must not be attached to the request.
Sanitizing HTTP Header Values. The Header Injec-
tion attack can be fixed by rejecting malformed CORS-
approvelisted HTTP headers that contain the newline char-
acter \n. Unlike other mitigations discussed in this section,
this fix does not impact compatibility as the vulnerability is
caused by an implementation bug instead of a design flaw.

4.3. Ethical Disclosure and Adopted Mitigations

We disclosed the Cross-Context State Inference attack
to Google in August 2021. Initially, the Chrome Security
team categorized it as intended behavior but reopened the
bug report after further interactions. As of July 2023, the
vulnerability has not yet been fixed. We also reported the
SameSite Cookie Bypass in June 2022, which unfortunately
did not receive immediate attention. Although our report
resulted in a bounty of $5,000, it was another party’s later
discovery of a related vulnerability (based on the same root
cause) that led to the fix of SameSite Strict cookies and the
change of the Fetch Metadata headers in CTs. Google issued
CVE-2022-4926 for both our original report and the later
identified issue. In addition, we reported the HTTP Header
Injection, which was fixed in Chrome 109 by appropriately
sanitizing HTTP header values. Our report resulted in a
$3,000 bounty and has been assigned CVE-2022-4188.

In April 2023, we reported additional attack vectors for
cross-context abuse, i.e., the Scroll Inference attack and the
Bottom Bar Spoofing vulnerability. While the former has
been fixed, awarded $2,000, and assigned CVE-2023-3736,
we are actively engaging with the Chrome team to identify

mitigations to address the latter. Google acknowledged the
data leakage through the URL in the bottom bar Intent but
has not yet decided to address the security risks due to
phishing, which are considered acceptable.

Overall, our extensive analysis of the CT APIs and their
security implications has raised awareness of the security
risks associated with the mechanism. Recent interactions with
the Chrome Security team have led to the acknowledgment
that the original security model of CTs did not consider
the possibility of cross-context attacks. As a result of
our disclosure, Google released the Chrome Custom Tabs
Security FAQ [42], which acknowledges the concerns raised
in this paper.

5. Prevalence of Custom Tabs

To fully understand the impact of possible mitigation
strategies on legitimate CT usage of applications, it is
necessary to understand how the component is used in the
wild. To this end, we assess the prevalence of CTs in a
set of over 50K widely used applications available on the
Google Play Store. For scalability reasons, we opted for
lightweight static code analysis, which potentially introduces
false negatives (i.e., we miss the usage of CTs) and false
positives (i.e., we detect the usage of CTs in code that is
never executed). We deem these limitations acceptable as
our aim is to gain an overview of how CTs are used, and
they do not undermine the validity of our key findings.

5.1. Dataset

As there is no comprehensive listing of applications
available on the Google Play Store, we first retrieved the
list of applications available from AndroZoo [43] as of
December 2022. We then filtered the list for package names
that are available on the Google Play Store and further
selected only applications with over 1M installations accord-
ing to their Google Play Store metadata that we collected
with google-play-scrape [44]. This process left us with
54,988 candidate apps that we downloaded from a European
Google Play Store using gplaycrawler [45] in the first two
weeks of March 2023 on a Pixel 4 device running Android
13. We were able to successfully download 50,831 out of
54,988 applications (92%). We merged applications that are
distributed as multiple (“split” [46]) APK files into a single
APK using APKEditor [47]. If the merging process failed,
we fell back to analyzing only the base APK.

5.2. Evaluation Methodology

Our analysis consists of three main stages. First, we
perform an automated static analysis of the APK files (the
distribution format of Android applications) to detect how
many apps use CTs. Then, we analyze the class names for
which we detect CT usage and distinguish between their use
in the main app and in libraries. After compiling a list of the
most commonly used libraries, we manually analyze them
to gain insights into how CTs are used.

5.2.1. Detection of CT Usage. To automatically analyze
applications for CT usage, we use Androguard [48], a static
analysis framework for Android applications. We first search
for the presence of the android.support.customtabs
.extra.SESSION string, a prerequisite for launching CTs,
to determine whether an app uses CTs [49]. We then
search for the usage of the launchUrl function of the
CustomTabsIntent class to collect all fully-qualified class
names from which CTs are launched. Similarly, we check
whether the CustomTabsCallback class is overridden in
code other than the support library to collect all classes that
use the CT navigation callbacks. Due to code obfuscation,
e.g., classes or methods being renamed in the build process,
this approach is not always able to identify the correct usage
of the support library functions or classes. For this reason,
we additionally collect the fully-qualified class name for
classes that contain the CustomTab string in their signature.

5.2.2. Characterization of Libraries. The output of the
static analysis phase includes, for every application, whether
it uses CTs and a list of possible code locations where CT
APIs are (likely) invoked. We then group these code locations
by package name and aggregate them across all applications,
collecting the most frequently used package names to build
a list of CT-related libraries. We then manually analyze
the libraries’ documentation, open-source code, and sample
applications to characterize their usage of CTs.

5.2.3. Limitations. We believe that our lightweight analysis
is sufficient to understand and approximate the usage of CTs
in the wild and reflect on the impact of mitigation strategies.
However, we inherit fundamental limitations of static code
analysis that can impact our results in the following ways.
Obfuscation. Developers can employ a wide range of
obfuscation mechanisms to complicate reverse engineering,
such as changing the signature of classes and methods and
obfuscating strings. Our approach can only identify usages
of CT APIs if they are not obfuscated. Similarly, we can only
detect the CT session string, and thus determine whether
an app uses CTs, if strings are not obfuscated. This may
introduce false negatives, i.e., the application uses CTs, but
we do not identify it. Similarly, when the package names of
libraries are obfuscated, we miss them during our aggregation.
This is a common limitation in Android application analysis,
and the robust detection of third-party libraries is an open
and orthogonal research area [50].
Dead Code. Applications may include code snippets that are
never used and called in practice. If an application includes
code fragments containing CT APIs, our analysis will flag
the application as using CTs, leading to false positives. Note,
however, that the Android build toolchain removes unused
code by default when the application is minified [51], thus
reducing the impact of this limitation.

5.3. Experimental Results

Out of the 50,831 applications in our dataset, the static
analysis failed for 63 applications due to malformed APKs.

Library (package name) launchUrl Callback

GMS Ads (com/google/android/gms/ads) 18, 732 0
Facebook (com/facebook) 9, 532 0
Inmobi (com/inmobi) 5, 326 5, 348

Firebase Auth (com/google/firebase/auth) 2, 403 0
Firebase Msg (com/google/firebase/inappmessaging) 1, 010 0
UniWebView (com/onevcat/uniwebview) 270 268

AWS (com/amazonaws/mobile/client) 125 151

BIGO (sg/bigo/ads) 127 127

Taboola (com/taboola/android) 143 87

TABLE 5: Top 5 sources of the launchUrl call and callback
override and the amount of apps that use them. Note that
one app can include more than one library.

510 apps using split APKs could not be merged, leaving us
with the base APKs.

5.3.1. Custom Tab Usage. Overall, we detected 42,372
APKs (83%) using CTs. Due to obfuscation, we were able
to identify a call to the launchUrl function of the CT
support library in 23,337 applications (55% of those that use
CTs), and we identified callback usage in 6,147 APKs, i.e.,
26% of those that also call launchUrl.

Table 5 reports the list of the top libraries included by the
applications that call launchUrl or override CustomTab-
sCallback.

5.3.2. Custom Tab Usage Patterns in Libraries. We
characterize the usage patterns of the CT APIs for all libraries
mentioned in Table 5 as well as two of the most frequently
used libraries (AppAuth, 229 applications, and OneSignal,
1,435 applications) for which, due to obfuscation, we could
not detect the launchUrl call but contain CustomTab in
their class signature.
Advertisement. Multiple applications use CTs to track inter-
actions with advertisements. The InMobi Android SDK [52],
BIGO Ads [53], and Taboola Android SDK [54] provide
ways to monetize applications by showing advertisements.
If clicking the advertisements redirects users to an external
website, CTs can be used to open them. InMobi only uses
the TAB_SHOWN and TAB_HIDDEN events. The events are
then used to monitor if and how long a user viewed the
content opened in a CT. BIGO Ads listens to and uses
all callback navigation events. It records the navigation
events and the timestamp at which they are fired and
calculates the timespan between them. Taboola listens to
the NAVIGATION_FINISHED event to record if the website
was loaded successfully. To determine whether a website
has failed to load, it does not use the NAVIGATION_FAILED
event but sets a timeout. If the timeout is reached and no
NAVIGATION_FINISHED event is fired, Taboola infers that
the website has failed to load.
Authentication. The Facebook SDK for Android [55],
Firebase Authentication [56], Amazon Web Services SDK
for Android [57], AppAuth for Android SDK [58], and
UniWebView [59] use CTs to authenticate users in the
application and open the authorization request screen in
them. The Amazon Web Services SDK and UniWebView

use the TAB_HIDDEN navigation event. In AWS, it is used
to capture when a user has interrupted the login flow. In
UniWebView, it is used to inform the host that the user
dismissed the browser.
In-app Messaging. In-app messages can be used to show
users messages that are comparable to pop-ups. Developers
can customize a message by adding buttons and associating
each button with an event, such as opening a URL. Firebase
In-App Messaging [60] and the OneSignal Android SDK [61]
can use CTs to open this URL. Both libraries do not use
callbacks.
Miscellaneous. In addition to authentication, the Facebook
SDK for Android also uses CTs to show specific dialogs
when sharing content on Facebook or joining games. CTs are
also used in WebView libraries, such as UniWebView, which
allows developers to open websites within an application,
play videos, and authenticate users via OAuth 2.0. Developers
can choose to open websites in a so-called “Safe Browsing
Mode” that launches the website in a CT. As previously
mentioned, UniWebView only uses the TAB_HIDDEN navi-
gation callback to inform the host that the user dismissed
the browser.

5.4. Discussion

Our evaluation shows that CTs are primarily used for two
purposes: to show Web content that is out of the context of the
application and for authentication with external services. In
the first case, CTs provide a smoother user experience while
transitioning to Web content than opening a separate browser.
In the second case, CTs are used to present the user with
the authorization request in authentication flows. The native
application-based flows section of the OAuth 2.0 standard
explicitly recommends CTs to initiate the authorization
request [62]. We point out that the standard does not mention
CT callbacks. Our empirical analysis confirms that callbacks
are not widely adopted in OAuth 2.0 flows. We discovered a
single usage of the TAB_HIDDEN callback in the AWS SDK
to detect when the user has interrupted the login flow.

Our analysis reported that 6,147 applications (12% of
our dataset) employ CT callbacks. The main use case of
callbacks is to detect whether a user has closed the browser
and to measure the time spent on a page. On the other hand,
navigation callbacks, such as NAVIGATION_STARTED and
NAVIGATION_FAILED are used less frequently. Based on our
results, removing callbacks to mitigate the Cross-Context
State Inference attack would primarily affect existing applica-
tions that rely on this feature for tracking and measuring user
engagement. A viable approach to ensure compatibility and
lower the impact of the attacks discussed in this work is to
restrict callbacks to CTs in the foreground and enable more
powerful callbacks only in the presence of a trust relationship
between applications and websites, as discussed in Sec. 4.

6. Case Studies

To demonstrate the practicality of the proposed attacks,
we report on case studies impacting prominent websites.

Sexual Preference Detection. The Cross-Context State
Inference attack can be mounted using a range of attack
vectors (Sec. 3.4.1). One such vector is timing, which
impact we demonstrate against FetLife. FetLife is a social
network targeted at users who consider themselves part
of the “BSDM, Fetish & Kinky Community” [63]. The
platform claims to have a user base of over 10 million users.
Using the timing-based technique, a PUA can determine
whether a user has an active session with the website
and, thus, whether they consider themselves part of this
community. The technique involves simultaneously opening
https://fetlife.com/users/sign_in in a CT and a
hidden WebView and measuring the loading times of the
website in both Web components, as described in Sec. 3.4.

To illustrate the feasibility of this approach on FetLife,
we carried out the attack 50 times with an active session
with the website and replicated it 50 times without one. The
experiments were performed on Chrome 115 on a Pixel
6a running Android 13. The timing results are presented
in Fig. 5. The figure shows that a loading time in the CT
exceeding the WebView’s loading time (the reference value)
by more than 400ms serves as a strong indication that the
user is logged in. Conversely, a difference below 400ms
suggests that the user is not logged in.

ProtonMail Login Detection. Besides timing, a Cross-
Context State Inference attack can be mounted using the
redirection-based attack vector. Here, we show the feasibility
of the redirection-based technique against the privacy-
focused email service ProtonMail (protonmail.com).
When the user has an active session with the website,
visiting the URL https://account.proton.me/login
triggers a JavaScript redirect to the inbox page at
https://mail.protonmail.com/inbox. In contrast,
unauthenticated users visiting the same URL are prompted
with a login form without incurring further redirections.
By opening the /login URL in a CT, the attacker can
probe if the user is logged in by counting the number of
NAVIGATION_FAILED events received, i.e., two if the user
is logged in and one otherwise. The attacker can also use
the CT Activity Hiding gadget to make the attack stealthy.

Location History Leakage. The Google Maps Timeline
service (timeline.google.com) allows users to view their
location history. Devices on which the user is logged in with
their Google account report their location to Google if the
feature is enabled. By encoding the target date in the URL
and specifying the target location in a URL fragment text
directive as in https://timeline.google.com/maps/
timeline?pb=!1m2!1m1!1s<yyyy-mm-dd>&#:∼:text
=<location>, the Web interface offered by the service can
be abused to probe if the user visited a specific place on a
specific date. Since the CT browser scrolls to the occurrence
of the location string, the Scroll Inference attack can be
used to leak this information. The granularity of the location
that can be probed is the precise postal address, including
the street number, e.g., 160 Broadway, San Francisco.
Because only one website can be opened in a CT at a time,
one location-date-pair can be probed in one attack run.

Logged in Not logged in

0

500

1000

1500

2000
 o

f l
oa

di
ng

 ti
m

e
[m

s]

 of the loading time in a CT
to the reference value

Custom Tab
(not logged in)

WebView
(not logged in)

500

1000

1500

2000

2500

Lo
ad

in
g

tim
e

[m
s]

Loading time in unauthenticated state

Custom Tab
(logged in)

WebView
(not logged in)

500

1000

1500

2000

2500

Lo
ad

in
g

tim
e

[m
s]

Loading time in authenticated state

Figure 5: Cross-Context State Inference timing-based attack on FetLife (n = 50). The figure compares the delta between the
loading time of the CT and the hidden WebView when authenticated and unauthenticated (left). It also shows the loading
times of the website in each state (middle, right).

Social Handle De-Anonymization. Social networks of-
ten provide an authenticated endpoint that performs an
automatic redirection to a URL that contains the user
ID. For example, https://m.facebook.com/profile
performs an HTTP redirection to /<username>. Other
major platforms have similar endpoints, such as YouTube
(https://m.youtube.com/profile) and the Russian so-
cial network VK (https://vk.com/id0). In combination
with the CT bottom bar, these endpoints can be abused
to perform a full de-anonymization of the user on social
networks. The attack flow is as follows: (i) the user of a
potentially unwanted application opens a legitimate website
(example.com) in a CT, e.g., by tapping on a link; (ii) the
application, instead, loads the Facebook /profile endpoint
in the CT and hides the entire viewport using the Web
Content Hiding gadget, showing a fake cookie banner in
the bottom bar (Fig. 4a); (iii) the user accepts or rejects the
cookies by tapping on the fake cookie banner, thus sending
the current URL to the application, which can then obtain the
user’s Facebook username (Sec. 3.8.1); (iv) the application
opens example.com in another CT window, thus simulating
that the cookie banner simply disappeared. Notice that since
we can hide the displayed URL in Edge CTs, the attack is
fully stealthy in this browser.

Phishing for Credentials. We demonstrate a phishing
attack on Instagram using the CT bottom bar, as shown in
Fig. 4b. A PUA displays a post on Instagram using a CT.
Assuming that the user has an active session on Instagram in
the underlying browser, the page loaded in the CT shows the
user’s profile picture and other personal information. This
helps build trust with the user, making them more confident
in the authenticity of the page. The CT bottom bar includes
a fake message that warns the user about unusual activity
in the account, suggesting an immediate password change.
After tapping on the bottom bar, the user is then prompted
to enter both the current password and a new password, thus
leaking the credentials to the application.

7. Related Work

Mobile Web Bridges. CTs are not the only way on
Android to display Web content in mobile applications.
Another such component is Android WebView [12]. Luo
et al. [6] were among the first to analyze vulnerabilities
in this component. They discussed how malicious websites
loaded in WebViews can attack vulnerable applications and
how malicious applications can attack websites loaded in
WebViews. Tuncay et al. [64] and Zhang et al. [65] presented
mechanisms for fine-grained access control when interacting
with Web content on Android. Zhang et al. [66] performed a
systematic evaluation of so-called app-in-app ecosystems that
embed applications inside other applications using WebViews
and found vulnerabilities in all 47 analyzed ecosystems.
Furthermore, Zhang et al. [2] focused on the usability of
in-app browsing interfaces, including CTs, and discovered
that several in-app browsers fail to provide users with enough
information about the website that is opened, including
information about unsafe operations during browsing, e.g.,
when the website is served over an unencrypted connection.
Similarly, Luo et al. [67] focused on the history of UI
vulnerabilities in mobile browsers and found that 98.6%
of the tested browsers are vulnerable to at least one attack.
Most similar to our work, Palfinger et al. [68] mention the
possibility of using the CT timing side channel to detect
user logins and rely on Android animations to divert users’
attention while the attack is being executed. Unlike our work,
they only consider the timing side channel without extending
the security analysis to other CT functionalities.
XS-Leaks. Our proposed Cross-Context State Inference
attack based on CT callbacks to infer user information is
comparable to the emerging class of cross-site leak (XS-Leak)
attacks. XS-Leaks date back to 2000, when a timing-based
attack to infer a user’s browsing history was proposed by
Felten and Schneider [69]. Since then, several other attacks
have been introduced, including approaches to infer the

user’s authentication status by detecting differences in the
response when loading resources that are only available to
authenticated users [70], [71]. Bortz et al. [25] showed that
timing side channels make it possible to detect fine-grained
data about a user, e.g., the number of items in the shopping
cart. Similarly, Gelernter et al. [72] were able to infer other
sensitive user information, such as whether a user has sent
another user an email containing a specific keyword. The
attack is based on the assumption that services such as
Gmail and Bing take a different amount of time to process
search queries, depending on the state of the user. Acar et
al. [73] showed how a Web-based attacker can discover the
presence of certain IoT devices on a user’s LAN using the
differences in the resulting error messages when loading
specific device endpoints in the HTML audio tag, thus al-
lowing user profiling and tracking. Furthermore, Burnett and
Feamster [74] demonstrated how XS-Leaks can be used to
detect and measure censorship based on resource availability.
Sudhodanan et al. [75] conducted a systematization of known
XS-Leak attacks, categorized them in attack classes, and
proposed a tool called Basta-COSI to automatically find cross-
site leak attacks on target websites. Building on this work,
Knittel et al. [76] developed a formal model of XS-Leaks and
detected 14 new attack classes through a systematic search for
new leak techniques. To evaluate the impact of XS-Leaks on
different browsers, they created XSinator that automatically
scans a Web browser and detects if it is vulnerable to XS-
Leaks. Karami et al. [77] showed how service workers can
enable additional XS-Leaks. In their work, they present
techniques to conduct history sniffing attacks, as well as more
fine-grained information leaks, such as user interactions on
WhatsApp. Most recently, Rautenstrauch et al. [78] developed
a framework to automatically discover XS-Leak observation
channels in browsers, revealing 280 channels in Chrome,
Firefox, and Safari. Moreover, testing the Tranco Top 10K
websites for XS-Leaks, they found that it was possible to
detect a user’s previous website visits on 15%, and determine
cookie acceptance on 34% of the tested websites.

8. Conclusion

We presented six new attacks that subvert the security
of Android’s Custom Tab component. These attacks can
be used for Cross-Context State Inference, to inject HTTP
headers into requests initiated by the CT, and to circumvent
SameSite Strict cookies. Furthermore, we showed how an
attacker can infer fine-grained information about a user by
exploiting the reporting of user scroll actions and how the
CT bottom bar can be exploited for information leakage and
phishing. Since there is a multitude of different Chromium-
based browsers available on Android (both in application
markets and pre-installed and potentially customized with
device firmware [79]), we restrict our study to Chrome,
Edge, and Brave. In addition, we considered Firefox, which
is the most-used non-Chromium-based browser available for
Android [79]. While Firefox supports CTs, it is the only
browser that is not vulnerable to any of our attacks. In order
to mitigate these attacks on all browsers, we discussed how

to address the core issues of the CT security model and
responsibly disclosed the vulnerabilities to Google. Finally,
we conducted a large-scale analysis of the usage of CTs in
the wild and found that 42K out of over 50K applications
use the component.

Acknowledgments

We would like to thank the anonymous reviewers for their
constructive feedback. This material is based on research sup-
ported by the Vienna Science and Technology Fund (WWTF)
and the City of Vienna [Grant ID: 10.47379/ICT22060;
and Grant ID: 10.47379/ICT19056]. This work has also
been supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research (grant
agreement 771527-BROWSEC), and SBA Research (SBA-
K1), a COMET Centre within the framework of COMET –
Competence Centers for Excellent Technologies Programme
and funded by BMK, BMDW, and the federal state of Vienna.
The COMET Programme is managed by FFG.

References

[1] T. Steiner, “What is in a Web View? An Analysis of Progressive Web
App Features When the Means of Web Access is not a Web Browser,”
in The Web Conference. ACM, 2018.

[2] Z. Zhang, D. Wu, L. Li, and D. Gao, “On the Usability (In)Security
of In-App Browsing Interfaces in Mobile Apps,” in International
Symposium on Research in Attacks, Intrusions and Defenses (RAID).
ACM, 2021.

[3] M. Neugschwandtner, M. Lindorfer, and C. Platzer, “A View to a
Kill: WebView Exploitation,” in Workshop on Large-Scale Exploits
and Emergent Threats (LEET), 2013.

[4] C. Rizzo, L. Cavallaro, and J. Kinder, “BabelView: Evaluating
the Impact of Code Injection Attacks in Mobile Webviews,” in
International Symposium on Research in Attacks, Intrusions, and
Defenses (RAID). ACM, 2017.

[5] P. Mutchler, A. Doupé, J. Mitchell, C. Kruegel, and G. Vigna, “A
Large-Scale Study of Mobile Web App Security,” in Mobile Security
Technologies Workshop (MoST). IEEE, 2015.

[6] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin, “Attacks on WebView
in the Android System,” in Annual Computer Security Applications
Conference (ACSAC). ACM, 2011.

[7] B. Anantapur Bache, “Cross-site Scripting Attacks on Android Web-
View,” International Journal of Computer Science and Network, vol. 2,
2013.

[8] E. Chin and D. A. Wagner, “Bifocals: Analyzing WebView Vul-
nerabilities in Android Applications,” in International Workshop on
Information Security Applications (WISA), 2013.

[9] M. Squarcina, S. Calzavara, and M. Maffei, “The Remote on the
Local: Exacerbating Web Attacks Via Service Workers Caches,” in
Workshop on Offensive Technologies (WOOT). IEEE, 2021.

[10] Chrome Developers, “Android Custom Tabs Overview,” Feb.
2020, (Accessed on 04/28/2023, https://archive.is/lLR6E). [Online].
Available: https://developer.chrome.com/docs/android/custom-tabs/

[11] Apple Developer Documentation, “SFSafariViewController,”
(Accessed on 11/15/2023, https://archive.is/TIphA). [Online].
Available: https://developer.apple.com/documentation/safariservices/
sfsafariviewcontroller

https://archive.is/lLR6E
https://developer.chrome.com/docs/android/custom-tabs/
https://archive.is/TIphA
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller

[12] Android Developers, “WebView,” Oct. 2023, (Accessed on
11/15/2023, https://archive.is/ggV3c). [Online]. Available: https:
//developer.android.com/reference/android/webkit/WebView

[13] Apple Developer Documentation, “WKWebView,” (Accessed on
11/17/2023, https://archive.is/xjO2v). [Online]. Available: https:
//developer.apple.com/documentation/webkit/wkwebview

[14] Android Developers, “CustomTabsCallback,” Aug. 2023,
(Accessed on 11/15/2023, https://archive.is/Ggws6). [Online].
Available: https://developer.android.com/reference/androidx/browser/
customtabs/CustomTabsCallback

[15] ——, “CustomTabsClient,” Aug. 2023, (Accessed on 11/15/2023,
https://archive.is/oP0lF). [Online]. Available: https://developer.android.
com/reference/androidx/browser/customtabs/CustomTabsClient

[16] P. Drotar, “How to add extra HTTP Request Headers to
Custom Tab Intents,” Aug. 2020, (Accessed on 11/15/2023,
https://archive.is/qYvLo). [Online]. Available: https://developer.chrome.
com/docs/android/custom-tabs/howto-custom-tab-request-headers/

[17] Google Developers, “Getting Started - Google Digital Asset Links,”
Nov. 2022, (Accessed on 11/15/2023, https://archive.is/RB0SO).
[Online]. Available: https://developers.google.com/digital-asset-links/
v1/getting-started

[18] Android Developers, “CustomTabsSession,” Nov. 2023, (Ac-
cessed on 11/15/2023, https://archive.is/Cf7G3). [Online].
Available: https://developer.android.com/reference/androidx/browser/
customtabs/CustomTabsSession

[19] ——, “Connect to the network,” Nov. 2023, (Accessed on
11/15/2023, https://archive.is/alswu). [Online]. Available: https:
//developer.android.com/training/basics/network-ops/connecting

[20] Z. Zhang, W. Diao, C. Hu, S. Guo, C. Zuo, and L. Li, “An Empirical
Study of Potentially Malicious Third-Party Libraries in Android
Apps,” in Conference on Security and Privacy in Wireless and Mobile
Networks (WiSec). ACM, 2020.

[21] J. Wang, Y. Xiao, X. Wang, Y. Nan, L. Xing, X. Liao, J. Dong,
N. Serrano, H. Lu, X. Wang, and Y. Zhang, “Understanding Malicious
Cross-library Data Harvesting on Android,” in Security Symposium
(USENIX), 2021.

[22] Android Developers, “Tasks and the back stack,” May 2023,
(Accessed on 11/15/2023, https://archive.is/o0fCo). [Online].
Available: https://developer.android.com/guide/components/activities/
tasks-and-back-stack

[23] XS-Leaks Wiki, “Introduction,” Dec. 2020, (Accessed on 11/15/2023,
https://archive.is/lV84m). [Online]. Available: https://xsleaks.dev/

[24] MDN web doc, “Redirections in HTTP - HTTP,” Oct. 2023, (Accessed
on 11/15/2023, https://archive.is/WfDgF). [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Redirections

[25] A. Bortz and D. Boneh, “Exposing private information by timing
web applications,” in International Conference on World Wide Web
(WWW). ACM, 2007.

[26] Y. Jia, X. Dong, Z. Liang, and P. Saxena, “I know where you’ve
been: Geo-inference attacks via the browser cache,” IEEE Internet
Computing, vol. 19, no. 1, pp. 44–53, 2015.

[27] E. Kitamura, “Gaining security and privacy by partitioning the
cache,” Oct. 2020, (Accessed on 11/15/2023, https://archive.is/
R7tww). [Online]. Available: https://developer.chrome.com/blog/
http-cache-partitioning/

[28] MDN web doc, “X-Frame-Options - HTTP,” Jul. 2023, (Accessed
on 11/15/2023, https://archive.is/wip/RDMlU). [Online]. Avail-
able: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/
X-Frame-Options

[29] ——, “CSP: frame-ancestors - HTTP,” May 2023, (Accessed
on 11/15/2023, https://archive.is/hSyTY). [Online]. Avail-
able: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/
Content-Security-Policy/frame-ancestors

[30] L. Weichselbaum, “Protect your resources from web attacks with
Fetch Metadata,” Jun. 2020, (Accessed on 11/15/2023, https://archive.
is/Y1HP3). [Online]. Available: https://web.dev/fetch-metadata/

[31] XS-Leaks Wiki, “Navigation Isolation Policy,” Dec. 2020, (Accessed
on 11/15/2023, https://archive.is/UIzZE). [Online]. Available: https:
//xsleaks.dev/docs/defenses/isolation-policies/navigation-isolation/

[32] S. Calzavara, R. Focardi, M. Squarcina, and M. Tempesta, “Surviving
the Web: A Journey into Web Session Security,” ACM Computing
Surveys (CSUR), 2017.

[33] L. Chen, S. Englehardt, M. West, and J. Wilander, “Cookies: HTTP
State Management Mechanism (IETF Draft),” Internet Requests
for Comments, Internet Engineering Task Force, RFC 6265bis,
11 2022. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-ietf-httpbis-rfc6265bis-11

[34] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for cross-
site request forgery,” in Conference on Computer and Communications
Security (CCS). ACM, 2008.

[35] MDN web doc, “Authorization - HTTP,” Aug. 2023, (Accessed
on 11/15/2023, https://archive.is/5ooeK). [Online]. Available: https://
developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

[36] M. Jones and D. Hardt, “RFC 6750: The OAuth 2.0 Authorization
Framework: Bearer Token Usage,” Internet Requests for Comments,
Internet Engineering Task Force, RFC 6750, Oct. 2012. [Online].
Available: https://datatracker.ietf.org/doc/html/rfc6750

[37] H. V. Nguyen, L. L. Iacono, and H. Federrath, “Your cache has fallen:
Cache-poisoned denial-of-service attack,” in Conference on Computer
and Communications Security (CCS). ACM, 2019.

[38] S. Khodayari and G. Pellegrino, “The state of the samesite: Studying
the usage, effectiveness, and adequacy of samesite cookies,” in
Symposium on Security and Privacy (S&P). IEEE, 2022.

[39] W3C, “URL Fragment Text Directives,” Oct. 2023, (Accessed
on 11/15/2023, https://archive.is/Ng7zj). [Online]. Available: https:
//wicg.github.io/scroll-to-text-fragment/

[40] MDN web docs, “Content Security Policy (CSP) - HTTP,” Jul.
2023, (Accessed on 11/15/2023, https://archive.is/2RRln). [Online].
Available: https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

[41] MDN web doc, “Sec-Fetch-Dest - HTTP,” Oct. 2023,
(Accessed on 11/15/2023, https://archive.is/evnJJ). [Online]. Avail-
able: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/
Sec-Fetch-Dest

[42] Chromium Docs, “Chrome Custom Tabs Security FAQ,”
(Accessed on 11/30/2023, https://archive.is/ZOJ8I). [Online].
Available: https://chromium.googlesource.com/chromium/src/+/main/
docs/security/custom-tabs-faq.md

[43] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,” in
International Conference on Mining Software Repositories (MSR).
ACM, 2016.

[44] GitHub, “facundoolano/google-play-scraper,” (Accessed on
03/28/2023). [Online]. Available: https://github.com/facundoolano/
google-play-scraper

[45] GitLab, “marzzzello / gplaycrawler,” (Accessed on 03/28/2023).
[Online]. Available: https://gitlab.com/marzzzello/gplaycrawler

[46] Android Developers, “Build Multiple APKs,” Apr. 2023, (Accessed
on 11/15/2023, https://archive.is/J8rrw). [Online]. Available: https:
//developer.android.com/build/configure-apk-splits

[47] GitHub, “REAndroid/APKEditor,” (Accessed on 04/11/2023). [Online].
Available: https://github.com/REAndroid/APKEditor

[48] ——, “androguard/androguard,” (Accessed on 03/27/2023). [Online].
Available: https://github.com/androguard/androguard

[49] Chrome Developers, “Custom Tabs Low level API,” Feb.
2020, (Accessed on 04/28/2023, https://archive.is/4CjAt). [Online].
Available: https://developer.chrome.com/docs/android/custom-tabs/
low-level-api/

https://archive.is/ggV3c
https://developer.android.com/reference/android/webkit/WebView
https://developer.android.com/reference/android/webkit/WebView
https://archive.is/xjO2v
https://developer.apple.com/documentation/webkit/wkwebview
https://developer.apple.com/documentation/webkit/wkwebview
https://archive.is/Ggws6
https://developer.android.com/reference/androidx/browser/customtabs/CustomTabsCallback
https://developer.android.com/reference/androidx/browser/customtabs/CustomTabsCallback
https://archive.is/oP0lF
https://developer.android.com/reference/androidx/browser/customtabs/CustomTabsClient
https://developer.android.com/reference/androidx/browser/customtabs/CustomTabsClient
https://archive.is/qYvLo
https://developer.chrome.com/docs/android/custom-tabs/howto-custom-tab-request-headers/
https://developer.chrome.com/docs/android/custom-tabs/howto-custom-tab-request-headers/
https://archive.is/RB0SO
https://developers.google.com/digital-asset-links/v1/getting-started
https://developers.google.com/digital-asset-links/v1/getting-started
https://archive.is/Cf7G3
https://developer.android.com/reference/androidx/browser/customtabs/CustomTabsSession
https://developer.android.com/reference/androidx/browser/customtabs/CustomTabsSession
https://archive.is/alswu
https://developer.android.com/training/basics/network-ops/connecting
https://developer.android.com/training/basics/network-ops/connecting
https://archive.is/o0fCo
https://developer.android.com/guide/components/activities/tasks-and-back-stack
https://developer.android.com/guide/components/activities/tasks-and-back-stack
https://archive.is/lV84m
https://xsleaks.dev/
https://archive.is/WfDgF
https://developer.mozilla.org/en-US/docs/Web/HTTP/Redirections
https://archive.is/R7tww
https://archive.is/R7tww
https://developer.chrome.com/blog/http-cache-partitioning/
https://developer.chrome.com/blog/http-cache-partitioning/
https://archive.is/wip/RDMlU
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://archive.is/hSyTY
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://archive.is/Y1HP3
https://archive.is/Y1HP3
https://web.dev/fetch-metadata/
https://archive.is/UIzZE
https://xsleaks.dev/docs/defenses/isolation-policies/navigation-isolation/
https://xsleaks.dev/docs/defenses/isolation-policies/navigation-isolation/
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis-11
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis-11
https://archive.is/5ooeK
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://datatracker.ietf.org/doc/html/rfc6750
https://archive.is/Ng7zj
https://wicg.github.io/scroll-to-text-fragment/
https://wicg.github.io/scroll-to-text-fragment/
https://archive.is/2RRln
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://archive.is/evnJJ
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Sec-Fetch-Dest
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Sec-Fetch-Dest
https://archive.is/ZOJ8I
https://chromium.googlesource.com/chromium/src/+/main/docs/security/custom-tabs-faq.md
https://chromium.googlesource.com/chromium/src/+/main/docs/security/custom-tabs-faq.md
https://github.com/facundoolano/google-play-scraper
https://github.com/facundoolano/google-play-scraper
https://gitlab.com/marzzzello/gplaycrawler
https://archive.is/J8rrw
https://developer.android.com/build/configure-apk-splits
https://developer.android.com/build/configure-apk-splits
https://github.com/REAndroid/APKEditor
https://github.com/androguard/androguard
https://archive.is/4CjAt
https://developer.chrome.com/docs/android/custom-tabs/low-level-api/
https://developer.chrome.com/docs/android/custom-tabs/low-level-api/

[50] X. Zhan, L. Fan, T. Liu, S. Chen, L. Li, H. Wang, Y. Xu, X. Luo,
and Y. Liu, “Automated third-party library detection for android
applications: Are we there yet?” in International Conference on
Automated Software Engineering (ASE). IEEE/ACM, 2020.

[51] Android Developers, “Shrink, obfuscate, and optimize your app,” Nov.
2023, (Accessed on 11/15/2023, https://archive.is/Xu1QI). [Online].
Available: https://developer.android.com/build/shrink-code

[52] InMobi, “InMobi Android And IOS SDK,” (Accessed on
11/15/2023, https://archive.is/ltTyO). [Online]. Available: https:
//www.inmobi.com/sdk

[53] BIGO Ads, “Bigo Ads Developer Management Platform,” (Accessed
on 11/15/2023, https://archive.is/Sz6jK). [Online]. Available: https:
//www.bigossp.com/guide/sdk/android

[54] Taboola, “Getting Started with the Android SDK,”
(Accessed on 11/15/2023, https://archive.is/7vQ0U). [On-
line]. Available: https://developers.taboola.com/taboolasdk/v2/docs/
taboola-android-sdk-install

[55] GitHub, “facebook/facebook-android-sdk,” (Accessed on 04/11/2023).
[Online]. Available: https://github.com/facebook/facebook-android-sdk

[56] Firebase, “Firebase Authentication,” Nov. 2023, (Accessed on
11/15/2023, https://archive.is/iuokm). [Online]. Available: https:
//firebase.google.com/docs/auth

[57] GitHub, “aws-amplify/aws-sdk-android,” (Accessed on 04/11/2023).
[Online]. Available: https://github.com/aws-amplify/aws-sdk-android

[58] ——, “openid/AppAuth-Android,” (Accessed on 04/12/2023). [Online].
Available: https://github.com/openid/AppAuth-Android

[59] UniWebView, “UniWebView,” Oct. 2023, (Accessed on 11/15/2023,
https://archive.is/hk0Y8). [Online]. Available: https://docs.uniwebview.
com/api/

[60] Firebase, “Firebase In-App Messaging,” Nov. 2023, (Accessed
on 11/15/2023, https://archive.is/uHBok). [Online]. Available: https:
//firebase.google.com/docs/in-app-messaging

[61] GitHub, “OneSignal/OneSignal-Android-SDK,” (Accessed on
04/12/2023). [Online]. Available: https://github.com/OneSignal/
OneSignal-Android-SDK

[62] W. Denniss and J. Bradley, “RFC 8252: OAuth 2.0 for Native
Apps,” Internet Requests for Comments, Internet Engineering
Task Force, RFC 8252, Oct. 2017. [Online]. Available: https:
//datatracker.ietf.org/doc/html/rfc8252

[63] FetLife, “The Social Network for the BDSM, Fetish & Kinky
Community,” (Accessed on 08/02/2023, https://archive.is/smiIe).
[Online]. Available: https://fetlife.com/

[64] G. S. Tuncay, S. Demetriou, and C. A. Gunter, “Draco: A system for
uniform and fine-grained access control for web code on android,” in
Conference on Computer and Communications Security (CCS). ACM,
2016.

[65] X. Zhang and Y. Zhang, “React: A resource-centric access control
system for web-app interactions on android,” in The Web Conference
(WWW). ACM, 2021.

[66] L. Zhang, Z. Zhang, A. Liu, Y. Cao, X. Zhang, Y. Chen, Y. Zhang,
G. Yang, and M. Yang, “Identity confusion in WebView-based mobile
app-in-app ecosystems,” in Security Symposium (USENIX), 2022.

[67] M. Luo, O. Starov, N. Honarmand, and N. Nikiforakis, “Hindsight:
Understanding the evolution of ui vulnerabilities in mobile browsers,”
in Conference on Computer and Communications Security (CCS).
ACM, 2017.

[68] G. Palfinger, B. Prünster, and D. J. Ziegler, “Androtime: Identifying
timing side channels in the android api,” in International Conference
on Trust, Security and Privacy in Computing and Communications
(TrustCom). IEEE, 2020.

[69] E. W. Felten and M. A. Schneider, “Timing attacks on web privacy,”
in Conference on Computer and Communications Security (CCS).
ACM, 2000.

[70] J. Grossman and R. Hansen, “Detecting States of
Authentication With Protected Images,” Nov. 2006,
(Accessed on 04/04/2023). [Online]. Available: https:
//web.archive.org/web/20150417095319/http://ha.ckers.org/blog/
20061108/detecting-states-of-authentication-with-protected-images/

[71] M. Cardwell, “Abusing HTTP Status Codes to Expose Private
Information,” Jan. 2011, (Accessed on 11/15/2023, https://archive.
is/TDNX0). [Online]. Available: https://www.grepular.com/Abusing
HTTP Status Codes to Expose Private Information

[72] N. Gelernter and A. Herzberg, “Cross-Site Search Attacks,” in
Conference on Computer and Communications Security (CCS). ACM,
2015.

[73] G. Acar, D. Y. Huang, F. Li, A. Narayanan, and N. Feamster, “Web-
based attacks to discover and control local iot devices,” in Workshop
on IoT Security and Privacy (IoT S&P). ACM, 2018.

[74] S. Burnett and N. Feamster, “Encore: Lightweight measurement of
web censorship with cross-origin requests,” in Conference on Special
Interest Group on Data Communication (SIGCOMM). ACM, 2015.

[75] A. Sudhodanan, S. Khodayari, and J. Caballero, “Cross-Origin State
Inference (COSI) Attacks: Leaking Web Site States through XS-Leaks,”
in Network and Distributed System Security Symposium (NDSS), 2020.

[76] L. Knittel, C. Mainka, M. Niemietz, D. T. Noß, and J. Schwenk,
“Xsinator.com: From a formal model to the automatic evaluation of
cross-site leaks in web browsers,” in Conference on Computer and
Communications Security (CCS). ACM, 2021.

[77] S. Karami, P. Ilia, and J. Polakis, “Awakening the web’s sleeper
agents: Misusing service workers for privacy leakage,” in Network
and Distributed System Security Symposium (NDSS), 2021.

[78] J. Rautenstrauch, G. Pellegrino, and B. Stock, “The leaky web:
Automated discovery of cross-site information leaks in browsers and
the web,” in Symposium on Security and Privacy (S&P). IEEE, 2023.

[79] A. Pradeep, A. Feal, J. Gamba, A. Rao, M. Lindorfer, N. Vallina-
Rodriguez, and D. Choffnes, “Not your average app: A large-scale
privacy analysis of android browsers,” in Privacy Enhancing Tech-
nologies Symposium (PETS), 2023.

[80] MDN web doc, “HTTP headers - HTTP,” Jul. 2023, (Accessed
on 07/31/2023, https://archive.is/KLu40). [Online]. Available: https:
//developer.mozilla.org/en-US/docs/Web/HTTP/Headers

Appendix A.
HTTP Header Injection

By default, only CORS-approvelisted headers can be
added to the initial request in a Custom Tab. These ap-
provelisted headers (as of Chrome 107) are summarized in
Table 6. The Header Injection attack (Sec. 3.5) additionally
allows the injection of non-CORS-approvelisted headers.

Given Chrome’s implementation, certain headers either
cannot be injected or can only be injected if absent in the
original request. To identify these headers, we enumerated the
approvelisted headers present in Chrome source code and the
non-approvelisted headers listed on MDN [80], excluding
caching- and encoding-related request headers. For each
header, we executed the Header Injection attack on a Pixel 6a
running Chrome 107 and Android 13 and observed whether
it was actually sent. Some headers, such as Accept, were
always sent in the initial request in a CT. For the others, we
manually configured Chrome to send them (e.g., in the case
of the Cookie header, we first set a cookie) and recorded
whether the headers were sent accordingly. The results are
provided in Table 6 and Table 7.

https://archive.is/Xu1QI
https://developer.android.com/build/shrink-code
https://archive.is/ltTyO
https://www.inmobi.com/sdk
https://www.inmobi.com/sdk
https://archive.is/Sz6jK
https://www.bigossp.com/guide/sdk/android
https://www.bigossp.com/guide/sdk/android
https://archive.is/7vQ0U
https://developers.taboola.com/taboolasdk/v2/docs/taboola-android-sdk-install
https://developers.taboola.com/taboolasdk/v2/docs/taboola-android-sdk-install
https://github.com/facebook/facebook-android-sdk
https://archive.is/iuokm
https://firebase.google.com/docs/auth
https://firebase.google.com/docs/auth
https://github.com/aws-amplify/aws-sdk-android
https://github.com/openid/AppAuth-Android
https://archive.is/hk0Y8
https://docs.uniwebview.com/api/
https://docs.uniwebview.com/api/
https://archive.is/uHBok
https://firebase.google.com/docs/in-app-messaging
https://firebase.google.com/docs/in-app-messaging
https://github.com/OneSignal/OneSignal-Android-SDK
https://github.com/OneSignal/OneSignal-Android-SDK
https://datatracker.ietf.org/doc/html/rfc8252
https://datatracker.ietf.org/doc/html/rfc8252
https://archive.is/smiIe
https://fetlife.com/
https://web.archive.org/web/20150417095319/http://ha.ckers.org/blog/20061108/detecting-states-of-authentication-with-protected-images/
https://web.archive.org/web/20150417095319/http://ha.ckers.org/blog/20061108/detecting-states-of-authentication-with-protected-images/
https://web.archive.org/web/20150417095319/http://ha.ckers.org/blog/20061108/detecting-states-of-authentication-with-protected-images/
https://archive.is/TDNX0
https://archive.is/TDNX0
https://www.grepular.com/Abusing_HTTP_Status_Codes_to_Expose_Private_Information
https://www.grepular.com/Abusing_HTTP_Status_Codes_to_Expose_Private_Information
https://archive.is/KLu40
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

Feature Sent by CT Injection possible

Accept ○ −

Accept-Language ○ ○

Content-Language − ○

Intervention − ○

Content-Type − ○

Save-Data − ○

Device-Memory ○ ○

DPR ○ ○

Width − ○

Viewport-Width ○ ○

Sec-CH-Viewport-Height ○ ○

Sec-CH-UA ○ ○

Sec-CH-UA-Platform ○ ○

Sec-CH-UA-Arch ○ ○

Sec-CH-UA-Model ○ ○

Sec-CH-UA-Mobile ○ ○

Sec-CH-UA-Full-Version ○ ○

Sec-CH-UA-Platform-Version ○ ○

Sec-CH-UA-Bitness ○ ○

Sec-CH-UA-Reduced ○ ○

Sec-CH-Prefers-Color-Scheme ○ ○

Sec-CH-Device-Memory ○ ○

Sec-CH-DPR ○ ○

Sec-CH-Width − ○

Sec-CH-Viewport-Width − ○

Range − ○

Sec-CH-UA-Full-Version-List ○ ○

Sec-CH-UA-Full ○ ○

Sec-CH-UA-WoW64 ○ ○

TABLE 6: Injection of CORS-approvelisted headers in
Chrome 107 (○ yes, ○ conditionally, − no).

Feature Sent by CT Injection possible

Content-Length − −

Connection ○ −

Keep-Alive − −

Proxy-Authorization ® −

Upgrade ® −

Authorization − ○

Sec-CH-Prefers-Reduced-Motion − ○

Downlink ○ ○

ECT ○ ○

RTT ○ ○

Accept-Encoding ○ ○

Except − ○

Max-Forwards − −

Cookie ○ ○

Access-Control-Request-Headers − ○

Access-Control-Request-Method − ○

Origin − ○

Content-Disposition − ○

Forwarded − ○

X-Forwarded-For − −

X-Forwarded-Host − ○

X-Forwarded-Proto − −

Via − ○

From − ○

Host ○ −

Referer ○ −

User-Agent ○ ○

Upgrade-Insecure-Requests ○ −

Sec-Fetch-Site ○ −

Sec-Fetch-Mode ○ ○

Sec-Fetch-User − −

Sec-Fetch-Dest ○ −

Sec-Purpose − ○

Service-Worker-Navigation-Preload − ○

Date ® ®

Early-Data − ○

TABLE 7: Injection of (selected) non-CORS-approvelisted
headers on Chrome 107 (○ yes, ○ conditionally/only if not
present, − no, ® unknown).

Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

This paper presents a series of attacks regarding An-
droid’s Custom Tab (CT) component. The authors attribute
root causes to these attacks and discuss their mitigation
strategies. Multiple CVEs are reported as a result.

B.2. Scientific Contributions

• Identifies an Impactful Vulnerability.
• Provides a Valuable Step Forward in an Established

Field.

B.3. Reasons for Acceptance

1) This paper identifies multiple impactful vulnerabilities.
The authors systematically study CT and discover
multiple cross-context attacks to infer user-private states

of CT or to phish the user. Concrete case studies that can
help the community verify the impactful vulnerabilities
discovered are provided. The root causes of each are
well explained in the paper. The discovered vulnerabili-
ties have been ethically disclosed. The vulnerabilities
discovered have been confirmed by Google’s Chrome
team and led to mitigations. In-depth mitigation strate-
gies that have been verified and adopted are presented.

2) This paper provides a valuable step forward in an
established field. Integration of web content in apps
has been primarily focused on WebView. The authors
add to the existing landscape by exploring the security
model of CT, hence moving the field forward.

B.4. Noteworthy Concerns

1) The paper lacks a systematic methodology that could
generalize the discovery of the attacks. The attacks
rely on manual investigation, testing, and review. Many
of the discovered attacks depend on bugs that are not
systematic. It may be hard for the community to learn
a principle approach from this paper or replicate the
discovery from the proposed attacks.

2) The empirical evaluation of CT prevalence may be
inaccurate. The static analysis approach used to derive
the results is prone to false positives and false negatives.

	Introduction
	Background
	State Sharing
	Navigation Awareness through Callbacks
	UI Customization and Other Features
	Activities and Intents in Android

	Subverting Custom Tabs
	Threat Model
	Methodology
	Custom Tab Hiding Gadgets
	Custom Tab Activity Hiding
	Web Content Hiding

	Cross-Context State Inference Attack
	Attack Vectors
	Stealthiness and Performance
	Advantages Over Traditional XS-Leak Attacks

	HTTP Header Injection
	Web Security Implications
	Limitations

	SameSite Cookie Bypass
	Scroll Inference Attack
	Bottom Bar Spoofing
	Information Leakage
	Phishing

	Mitigations
	Cross-Attack Mitigations
	Custom Tab Embedding Policies
	Restrict State Sharing

	Attack-Specific Mitigations
	Ethical Disclosure and Adopted Mitigations

	Prevalence of Custom Tabs
	Dataset
	Evaluation Methodology
	Detection of CT Usage
	Characterization of Libraries
	Limitations

	Experimental Results
	Custom Tab Usage
	Custom Tab Usage Patterns in Libraries

	Discussion

	Case Studies
	Related Work
	Conclusion
	References
	Appendix A: HTTP Header Injection
	Appendix B: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

