
The Bridge between Web Applications and Mobile
Platforms is Still Broken

Philipp Beer, Lorenzo Veronese, Marco Squarcina, Martina Lindorfer
TU Wien

philipp.beer@student.tuwien.ac.at, {lorenzo.veronese, marco.squarcina, martina.lindorfer}@tuwien.ac.at

Abstract—The traditional way for users to access web content
on mobile devices is by loading websites in a standalone browser
like Google Chrome or Firefox. Websites and recently also
Progressive Web Applications (PWAs) can, however, not only be
rendered in such standalone browsers, but also in so-called mobile
Web Views embedded in native mobile applications. PWAs are
a new paradigm in web development that brings native app-like
features, such as push notifications and offline usage, to the Web.
We investigate the security of those Web Views at the intersection
of application security and web security and present two new
attacks: (1) an attack in which Android’s Custom Tab browser
feature serves as a cross-site oracle to infer information about
a user on target websites and (2) a vulnerability in Web View
plugins of two third-party development frameworks that allows
an attacker to use a vulnerable application to access the victim’s
microphone and camera stealthily. We perform a preliminary
real-world evaluation on the top 250 free Android applications
and found that 5% of those that request microphone or camera
permissions are potentially vulnerable to the Web View attack.

Index Terms—Mobile Security, Web Security, Web Views,
Information Leakage, XS-Leaks

I. INTRODUCTION

Nowadays, web content is no longer only consumed on
desktop devices, but also heavily viewed on smartphones and
tablets. The worldwide market share of mobile and tablet
devices amounts to 58.08% compared to a market share
of 41.96% on desktop devices as of June 2021 [1]. While
desktop devices offer the browser as the primary means to
view websites, mobile devices are much more diverse. Mobile
operating systems, such as the two big players Android and
iOS, also allow developers to embed websites into native appli-
cations using a mobile Web View component. Developers can
customize the Web View to match the application’s theme and
minimize the visible disruption between the native application
and the web content. Both Android and iOS offer multiple
Web View components providing different functionalities.
These components are widely used in mobile applications.
For instance, the WebView1 class, a Web View component
in Android, is used in 85% of all free Android applications
listed in the Google Play Store as of June 2014 [2]. Examples
of applications that use such in-app browsers are popular social
network applications like Facebook and Twitter.

Note. This is a work-in-progress paper presented at SecWeb 2022, co-
located with the 43rd IEEE Symposium on Security and Privacy (S&P 2022).

1To prevent confusion, we use the notation WebView to refer to the
Android class and Web View for the generic embedding mechanism.

Mobile Web Views offer APIs that allow the host application
to communicate with the web content loaded in the Web View
and vice versa. Bridging the mobile native application and
the web content can, however, have unforeseen consequences.
Since Web Views are at the intersection between native
mobile applications and web applications, classical security
analysis of mobile applications, on the one hand, and web
security, on the other hand, cannot be isolated but need to
be considered as a whole. Applying traditional knowledge of
both security disciplines separately does not lead to secure
mobile applications when embedding Web Views. Security
risks previously unknown to mobile applications can become
a threat when these components are used [2]. Even though
there was extensive research on the topic [3]–[6], new attack
vectors, as we present in this paper, emerge. Research on these
components is thus still relevant today.

Moreover, mobile Web Views can not only display static
websites that serve simple HTML and CSS files over HTTP,
but also dynamic websites such as Progressive Web Appli-
cations (PWAs) that make use of modern Web APIs. PWAs
are a new paradigm in web development that brings features
previously known only on native applications to the Web, such
as push notifications, offline usage, and background synchro-
nization. The availability of such APIs blurs the distinction
between websites and native applications and makes them first-
class citizens in the mobile ecosystem by, e.g., allowing users
to add PWAs to the device home screen [7] or install them via
the Google Play Store as Trusted Web Activities [8].

In this paper, we focus on the security of mobile Web Views.
First, we state necessary background knowledge on mobile
Web Views. We then define common threat models of mobile
Web View attacks used in our work. Afterward, we propose
two new attacks using Android’s Web View components. The
first attack uses a malicious application to launch the Android
Custom Tabs component to leak user information on target
websites, whereas the second attack aims at the WebView
component of vulnerable applications using third-party plugins
of popular Android frameworks to access the user’s camera
and microphone. We furthermore present possible mitigation
strategies for each proposed attack.

In summary, we make the following contributions:

• We present a novel attack using Android Custom Tabs.
In particular, the attack allows a malicious application
to use the Custom Tab feature as a cross-site oracle to

1

infer information about the victim on vulnerable target
websites. We also discuss possible mitigation strategies.
To the best of our knowledge, this is the first attack
identified on Android Custom Tabs (Section IV).

• We discover a vulnerability on the WebView com-
ponent of two third-party plugins of popular Android
frameworks. Particularly, we demonstrate how malicious
websites loaded in vulnerable applications can use the
camera and microphone permission to access those de-
vices stealthily. We then discuss mitigation strategies for
the attack (Section V).

• We perform a preliminary small-scale evaluation to un-
derstand the compatibility of the proposed mitigation for
the Custom Tab attack. Furthermore, we evaluate the
collected applications to quantify the risks posed by the
WebView attack (Section VI). Our evaluation shows that
5% of the top 250 free Android applications that request
either camera or microphone permissions are potentially
vulnerable to the WebView attack.

II. BACKGROUND

Traditionally, websites on mobile devices are accessed by
opening them in a standalone browser application like Google
Chrome, Firefox, or Safari. Web pages can, however, also be
viewed through in-app browsers that render web pages inside
a native application. These embedded browsers are called Web
Views [9]. Both Android and iOS offer different Web View
components, that will be discussed in this section.

A. Web Views on Android

Android supports three different mechanisms for embedding
web content in native apps, namely the WebView class,
Custom Tabs and Trusted Web Activities [10].

Android WebView. The Android WebView component al-
lows developers to create their own in-app browser. It does
not offer standard browser features like the URL bar and nav-
igation control buttons but rather just renders the web content.
WebViews do not share state with either the browser that
powers them, nor with other WebView instances, but instead
are completely isolated. This means that user data, e.g., the
history, cache, service workers, cookies, is not shared between
the WebViews and the browser that is used for traditional
web navigation [11]. The browser used for WebView is based
on Chrome, nevertheless it does not support all features that
Chrome supports [12].

It is straightforward for developers to use the WebView
component inside an application, as shown in Listing 1. The
Android app that hosts the WebView can interact with the web-
site that is loaded, as well as vice versa. In the former case, the
application can inject JavaScript code into the web content by
calling loadUrl(javascript:<code_to_inject>)
on the WebView object. Note that JavaScript is dis-
abled by default and must be enabled explicitly by
setting settings.javaScriptEnabled on the target
WebView to true. The WebView executes the injected code
in the context of the opened website [13]. In the latter case, the

1 val webView: WebView = findViewById(R.id.webview)
2 webView.settings.javaScriptEnabled = true
3 webView.loadUrl("https://example.com")

Listing 1: Opening https://example.com in a WebView.

web page can invoke Java or Kotlin code of the application.
To do so, a WebView registers Java/Kotlin objects by calling
the addJavascriptInterface function given a target
class and a name as parameters. This makes all methods
annotated with @JavascriptInterface inside the given
class available from content loaded in the WebView [13].
JavaScript code of the website can then call these native
functions.

Furthermore, applications embedding a WebView can lis-
ten to events happening inside the loaded web page and
react appropriately. This can be achieved by so-called hooks.
WebViewClient [14] implements hook functions with a
default behavior that are triggered when the corresponding
event fires. Those functions can be overridden which makes
it possible to implement custom event handlers. Using this
functionality, developers can, for example, restrict the possible
domains that can be loaded inside a WebView.

Android Custom Tabs. Custom Tabs on Android provide
a way to customize a browser Activity [15] to fit the host
application’s theme. It is a browser feature that browser
vendors need to implement themselves. This also means that
different browsers support different features of Custom Tabs.
When a Custom Tab is launched, a new Activity of the browser
is started. In comparison to WebView, Custom Tabs support
all browser features that the underlying browser supports. They
also offer performance advantages over WebView instances.
This is achieved by features such as a pre-warming of the
browser in the background and by informing it about likely
future user navigation using the mayLaunchUrl [16] method
so that the browser can perform preparatory work [10]. The
method takes a list of URLs of likely future user navigation.

It is important to note that, compared to WebViews, Custom
Tabs share state with the underlying browser, i.e., they use
the same cookie jar, service workers, caches etc. [10]. For
security reasons, the application that starts the Custom Tab
cannot inject JavaScript code, neither can JavaScript code
call Java/Kotlin code of the application [17]. The native
application can, however, communicate with the web page
via postMessage using the CustomTabsSession [16]
class and can listen to navigation events inside the Custom Tab
using the CustomTabsCallback [18] class. Those events
are fired when the page has started loading, finished loading,
aborted while loading, when an error occurred while loading
the page, and when the tab becomes visible or hidden.

Android Trusted Web Activities. Trusted Web Activities
display a full-screen browser tab without the browser UI [19].
They are built upon Custom Tabs and thus also share state
with the underlying browser. Differently from Custom Tabs,
postMessage is not supported [20]. The app that uses the

2

Trusted Web Activity and the website loaded in it must come
from the same developer. This relationship is proven by Digital
Asset Links (DALs) [8].

B. Web Views on iOS

Although this paper’s focus is on Android Web Views,
we give, for the sake of completeness, a brief overview of
Web Views on iOS. Web content inside an application on
iOS can be rendered in two different ways: either by using
WKWebView [21] or SFSafariViewController [22].

iOS WKWebView. This can be seen as the iOS-equivalent to
WebView. As WebView on Android devices, WKWebView
allows the native host application to inject JavaScript code
into the rendered website [21]. In comparison to WebView,
JavaScript is enabled by default [23]. It is also pos-
sible to call a native function of the application from
JavaScript code inside the web page by exposing it using the
WKUserContentController.add method [24].

iOS SFSafariViewController. This class, on the other hand,
is the equivalent of Android Custom Tabs. It allows for
handing over the responsibility of rendering a web page to Sa-
fari. Because Safari is used, SFSafariViewController
can use the Safari features AutoFill, content blocking,
Fraudulent Website Detection and Reader. Until iOS 10,
SFSafariViewController shared state with the browser.
This was changed from iOS 11 (released in 2018) on to not
share any state with Safari [22].

III. THREAT MODELS

We consider two threat models under which an attacker
can perform attacks using a mobile Web View: (1) either
the content loaded in the Web View is malicious and attacks
the benign application or (2) the application is malicious and
attacks the legitimate content loaded in the Web View.

A. App Attacker Using a Web View (AppAtk)

An app attacker using a Web View (AppAtk) operates a ma-
licious mobile application that attacks a benign website loaded
in the Web View controlled by the application. The malicious
application only requires permission to access the Internet
and therefore seems relatively unobtrusive. On Android, the
Internet access permission is a normal permission, i.e., it
is automatically granted at install time [25]. The malicious
application can be disguised as a useful, legitimate application
to lure the user into downloading and using it. It is also
plausible that an attacker operates a library or SDK that if
used in a benign application, turns it malicious [26], [27].

The definition of this attacker is based on the attacks from
malicious apps threat model proposed by Luo et al. [3] and
illustrated in Fig. 1a.

B. Web-based Attacker Using a Web View (WebBAtk)

A web-based attacker using a Web View (WebBAtk) man-
ages to load malicious content into a Web View. In contrast
to an AppAtk, the application that embeds the Web View is
benign. We note that a WebBAtk is different from a classical

web attacker known in the web security literature, since a
WebBAtk can have capabilities that are out of scope for a
standard web attacker. A WebBAtk is enabled by one of the
following capabilities:
Malicious website. A WebBAtk hosts a malicious website
and manages to load it into the benign Web View. Although
this assumption sounds hard to fulfill, the literature has found
various ways to do so, such as by improper usage and
sanitization of Intent Filters2 by the benign app. The attacker
can also use other kinds of social engineering to navigate
the user inside the Web View to the malicious website. This
definition is similar to the attacks from malicious web pages
threat model proposed by Luo et al. [3].

Another manifestation of this enabling condition is a gadget
attacker as proposed by Barth et al. [29] that operates a
malicious iframe, which is embedded in a benign website
loaded in a Web View. This can be achieved through malicious
advertisements [3]. Fig. 1b shows the threat model based on
a malicious website.
Machine-in-the-middle attack (MITM). The WebBAtk
manipulates the network traffic between a Web View and
the server. This way, one can change the website loaded
into the Web View and inject malicious code to attack the
benign application. This specific attacker was proposed by
Neugschwandtner et al. [4]. Fig. 1c illustrates the threat model.
Compromised server. A WebBAtk can also aim for the
server of the website that is loaded inside a Web View of a
benign application. The attacker can leverage web vulnerabil-
ities of a website, such as persistent XSS or SQL injections,
to manipulate the content of the server and turn the benign
website malicious in order to attack the benign application [4].
Fig. 1d depicts the threat model based on a server compromise.

IV. CUSTOM TAB ATTACK

In this section, we present a novel attack that abuses the
capabilities of Android’s Custom Tab component to infer user
information on target websites, such as the user’s authenti-
cation status. The vulnerability is enabled by the fact that
Custom Tabs share state with the underlying browser and by
the availability of a callback mechanism for navigation events.
The attack is not restricted to probing the authentication status
of users, but can be extended to further information leakage,
such as to detect whether a user has visited a website before,
thus it potentially also opens doors for history sniffing attacks.
To the best of our knowledge, research has not yet covered the
security of Custom Tabs, and this is the first security analysis
of this component.

We first discuss the threat model. Afterward, we present
three techniques for inferring user information on target web-
sites as well as how stealthiness can be achieved. In particular,
we introduce the status-code-based, redirection-based, and
timing-based approaches and compare vulnerable browsers.
Subsequently, we argue the severity of the attack by stating

2Intents are used to communicate between two activities. Intent Filters
declare what kind of intents an app can receive [28].

3

Malicious application

WebView

Benign website

Benign server

(a) AppAtk

Benign application

WebView

Malicious website

Malicious server

(b) WebBAtk en-
abled by a malicious
website

Benign application

WebView

Benign website
turned malicious

Benign server

MITM

(c) WebBAtk en-
abled by a MITM at-
tack

Benign application

WebView

Benign website
turned malicious

Compromised server

(d) WebBAtk en-
abled by server com-
promise

Fig. 1: Threat models on mobile Web Views considering an app attacker (AppAtk) and a web-based attacker (WebBAtk).

security implications that are not common in other similar
approaches and propose possible mitigation strategies. We also
provide a proof of concept of the attack.3

A. Threat Model

We consider an AppAtk as described in Section III that
operates a malicious Android application that is installed on
the victim’s device and is actively used. The goal of the app
is to launch the attack while it is in use and stealthily load
target websites into a Custom Tab by the application.

B. Attack Description

Custom Tabs share state with the underlying browser.
This means that cookies, caches, service workers etc., are
shared between the Custom Tab and the browser used by
the Custom Tab. Consequently, if a user is authenticated on
example.com in browser B1 and a Custom Tab provided
by that browser opens example.com, the user is also au-
thenticated in the Custom Tab. However, if a Custom Tab
provided by browser B2 opens the same website, the user
is not authenticated, since another browser is used.

To keep the application that launched it informed
about ongoing events, Custom Tabs offer the
CustomTabsCallback [18] class that provides a callback
mechanism to the application. Custom Tabs distinguish six
different types of navigation events [18]:

• NAVIGATION_STARTED fires when the website has
started loading,

• NAVIGATION_ABORTED fires when the website loading
is aborted due to a user event. This is the case when the
user reloads the page or cancels the loading,

• NAVIGATION_FAILED fires when the website could
not be loaded,

• NAVIGATION_FINISHED fires when the website has
finished loading,

3https://github.com/secweb22-brokenbridge/custom-tab

• TAB_SHOWN fires when the tab in which the website is
loaded becomes visible and

• TAB_HIDDEN fires when the tab in which the website is
loaded becomes hidden.

An AppAtk can infer sensitive information about a user by
analyzing the sequence in which the different types of events
are fired and measuring the time between events. This attack is
comparable to an emerging class of web vulnerabilities called
cross-site leaks (XS-Leaks) [30], in which a cross-site oracle
is used to leak user information. In the Custom Tab attack, the
callback mechanism of Custom Tabs serves as the cross-site
oracle.

We have identified three techniques for inferring user in-
formation of the victim on a target website. For all the
techniques, a malicious application launches the target website
in a Custom Tab and analyzes the callback events. Although
this section focuses on detecting the user’s authentication
status, the attack is by no means restricted to that. Information
of a user can be inferred whenever the sequence of the callback
events and the timing of the events on a target resource depend
on the state of a user on a target website. Such states can
potentially also describe whether a user is logged in with a
specific user account or to reconstruct the social graph of a
user. The identified techniques are detailed below.

1) Status-code-based Attack: The status-code-based attack
is enabled by the way Custom Tabs provided by Chrome,
Edge and Brave handle websites with specific HTTP response
codes. Our experimental evaluation showed that a website
loaded with response code 4xx or 5xx and an empty response
body triggers a different sequence of navigation events than
a response with another status code, such as 200 OK. The
specific sequence of navigation events that are fired when
such a website is loaded is depicted in Fig. 2. The website
example.com loaded with status code 4xx/5xx and empty
response body triggers the NAVIGATION_FAILED event
directly followed by the NAVIGATION_FINISHED event. A

4

Malicious Application

Malicious Application example.com

"open example.com"

GET example.comNAVIGATION_STARTED

Status code 4xx/5xx with

empty response body

NAVIGATION_FAILED

NAVIGATION_FINISHED

Custom Tab
Time

Fig. 2: Status-code-based Custom Tab attack.

website loaded with status code 2xx/3xx, independent of the
response body, or 4xx/5xx with non-empty response body
only triggers the NAVIGATION_FINISHED event.

Websites that follow the standard of HTTP response
codes according to RFC 2616 [31] and return 401
UNAUTHORIZED when an unauthorized user is requesting
a restricted resource are vulnerable to such an attack if the
response body is empty. An attacker can request a resource
that is only accessible by authorized users and check for the
NAVIGATION_FAILED event. If the event is fired, the user
is not authenticated. Since this attack technique only works
when an empty response body is transmitted on status code
4xx and 5xx, the impact of this method to leak information
is significantly reduced. Responses with a non-empty body
only trigger the NAVIGATION_FINISHED event, regardless
of their status code.

2) Redirection-based Attack: An attacker can also infer
user information on a target website by checking whether
requesting a specific resource on this website triggers a redi-
rection. This resource can be, for instance, the login page of
the target website that automatically redirects the user to the
home screen when authenticated. Another possibility can be
a restricted resource that redirects the user to the login page
when not authenticated. This allows an attacker to determine
if the user is authenticated on the target website. We have also
identified websites that redirect users to a website for giving
consent to using third-party cookies on the first visit. This
allows an attacker to probe if a user has accepted the cookies
and hence has visited the website before.

The behavior of a Custom Tab on a redirection depends on
the type of redirection. MDN [32] lists three techniques to
perform a redirection:

• HTTP redirection. HTTP responses with a status code
in the 3xx range indicate a redirection to the client. The
server can set a Location header to tell the browser
the URL to redirect to.

• HTML redirection. A <meta> tag in the HTML head of
the website with the http-equiv tag set to Refresh
and the URL tag set to the target URL makes the browser
redirect to the target when the page is loaded.

• JS redirection. Also JavaScript can be used for redi-
rection. This can, for instance, be achieved by calling
window.location=<redirection_url>.

Our experiments on Custom Tabs provided by
Chrome, Brave and Edge have shown that the

Malicious Application

Malicious Application

Custom Tab

example.com
"open example.com"

GET example.comNAVIGATION_STARTED

Status code 2xx/3xx*
NAVIGATION_FINISHED

GET example.com/redirected

Status code 2xx/3xx*

HTML/JS redirect
NAVIGATION_STARTED

NAVIGATION_FINISHED

Time

*or status code 4xx/5xx with

non-empty response body

Fig. 3: Redirection-based Custom Tab attack.

Malicious Application

Malicious Application

Custom Tab

example.com

"open example.com"

GET example.com

Status code 2xx/3xx*

NAVIGATION_FINISHED

NAVIGATION_STARTED

Time

*or status code 4xx/5xx with

non-empty response body

Fig. 4: Timing-based Custom Tab attack.

NAVIGATION_STARTED and NAVIGATION_FINISHED
events are fired on redirection when HTML or
JavaScript redirection is used, as can be seen in Fig. 3.
Consequently, if the page example.com/login redirects
to example.com/home using HTML or JavaScript
redirection, two NAVIGATION_STARTED and, respectively,
two NAVIGATION_FINISHED events are fired — one for
each page. When HTTP redirection is used, only the initial
NAVIGATION_STARTED and NAVIGATION_FINISHED
events are fired. Websites employing HTTP redirection are
thus not vulnerable to the redirection-based attack.

3) Timing-based Attack: Using a timing-based attack,
an attacker determines the amount of time a website
takes to load by measuring the time interval between the
NAVIGATION_STARTED and NAVIGATION_FINISHED
events, as we show in Fig. 4. The underlying assumption is
that the time required for a specific resource to be loaded in
the Custom Tab depends on the status of the user on a website,
e.g., the user’s authentication status. This is a valid assumption
since the website server, if authenticated, may need to either do
some heavy computation or load resources from the database.

To run the attack described above, one needs to compare
the measured loading time with a baseline value. The baseline
value represents the loading time when the user is certainly
not authenticated. This could be a fixed value, however, this
will not lead to consistent results, since the loading time
depends on various factors, such as the speed of the network
the user is connected to. One approach is to load the target
website in a hidden WebView in the application, measure
the loading time and compare it with the loading time in the
Custom Tab. Since WebViews do not share state with the
browser, the user is surely not authenticated in them. Although
onPageLoadStarted and onPageLoadFinished in
the WebViewClient class can be overridden to measure
the loading time, our experiments have shown that the results
are not always accurate. To get around this, one can use

5

Activity A
Malicious Application

example.com

Custom Tab

example.com

Activity B
Malicious Application

Activity B

Activity A

Activity A
Malicious Application

Activity A

Activity A
Malicious Application

Activity A

example.com

Custom Tab

example.com

(1) (2)

Background

Foreground

(3)

Fig. 5: Procedure to hide the Custom Tab.

the PerformanceNavigationTiming Web API [33]. It
allows retrieving information about the navigation events in a
browser, such as the loading time of a document. In particular,
the duration field can be used for the purpose of the
attack. It returns the difference between the loadEventEnd
property, that holds a timestamp when the document has
completely finished loading, and the startTime property.

Because WebViews allow for the injection of JavaScript
code, the malicious application can query the duration field
by providing a JavaScript bridge to the application.

The timing-based attack may also be used when HTTP
redirections to a target website are used. Even though HTTP
redirections cannot be identified by using the redirection-based
attack, every redirection adds an additional round-trip which
is reflected in the loading time.

C. Achieving Stealthiness

An attacker aims to run the attack in a stealthy manner so
that the user does not notice it. For that purpose, the Custom
Tab that opens the target resource needs to be hidden from the
user. As soon as the Custom Tab is opened by the application
by calling launchUrl with the target resource as a parameter
on the CustomTabsIntent object, a Custom Tab Activity
is launched. The Custom Tab Activity is loaded full-screen and
cannot be opened in the background or closed other than by a
user click on the close button. To work around this behavior,
the attack can be conducted as shown in Fig. 5. (1) Activity A
of the malicious application launches the Custom Tab with the
target resource example.com. (2) Activity A listens to the
TAB_SHOWN event of the Custom Tab and launches Activity
B as soon as it is received. (3) Even though Activity B is
now in the foreground, the navigation events are still reported
to Activity A.

One aspect that an attacker needs to consider is the back
stack. The back stack stores all open activities in the order in
which they are opened and is used for navigation and handling
presses on the device’s back button. If the back button is
pressed, the Activity on top of the back stack is removed,
and the previous Activity continues in the foreground [34].

Since the Custom Tab Activity is right below Activity
B in the back stack, the user would see the Custom Tab
on a back button press. Although Custom Tabs can be
started with the Intent.FLAG_ACTIVITY_NO_HISTORY
flag that prevents the Activity from being added to the back

stack, using this does not result in the expected behavior.
Our experiments have shown that employing this flag prevents
Activity A from receiving callbacks from the Custom Tab
when it is hidden by Activity B. Alternatively, one can
override the onBackPressed [35] function in Activity B
that is called by the Android sytem when the user presses the
back button. The function can be overridden so that it launches
a new Intent that starts Activity A again.

This approach to hide the Custom Tab leads to good results
in practice. However, slower devices may take a while to
start the Custom Tab and the underlying browser, which leads
to cases in which the Custom Tab is shortly visible before
Activity B is launched. The number of these cases can be
significantly reduced by calling warmup [36] on the Custom
Tab some time before opening the target resource. Calling
the warmup method pre-initializes the underlying browser
application in the background and contributes to a faster start
after launchUrl is called on the Custom Tab.

Listing 2 shows a minimal implementation of the at-
tack. Lines 1–19 implement the callback and save it to
the callback variable. We specify the action when a
specific event is received. Line 5 opens the overlay activ-
ity to hide the Custom Tab as soon as the TAB_SHOWN
event is fired. The functions onNavigationStarted,
onLoadingFinished and onLoadingFailed can be
used to capture the sequence of fired events and mea-
sure the time between the events. For brevity, we
omit the implementation of those. By implementing the
CustomTabsServiceConnection class in lines 21–27,
we specify the details of the Custom Tab that we want
to launch. In line 23, we specify to create a Custom Tab
session used for Custom Tab communication. We also tell
the browser to call the warmup method in line 24. Line 26
provides an empty implementation for the abstract function
CustomTabsServiceConnection. Line 29 binds the
Custom Tab service and also specifies which browser to use.
This is specified in the packageName string. The context
variable is provided by the Android system. In line 30, we
create the Custom Tab Intent using the session created earlier.
Line 31 launches the URL given in url in the Custom Tab.
Improving the attack performance. We have experimentally
evaluated whether multiple websites can be opened in a
single attack run (i.e., in one activity transition). This can be
achieved by sequentially launching Custom Tabs as soon as the
NAVIGATION_FINISHED event of the preceding Custom
Tab is fired and launching the overlay activity when the
TAB_SHOWN event of the last Custom Tab is fired. In our
experiments, we were successful to launch 5 Custom Tabs in
about 2 seconds on a mid-end device. This, however, leads to
an unresponsive UI for this time period.

D. Vulnerable Browsers

We tested the three attack techniques on Chrome 91, Firefox
89, Brave 1.24, Edge 46 and Opera 64 on Android 11. As
summarized in Table I, our experiments have shown that
Custom Tabs are supported by Chrome, Firefox, Brave and

6

1 val callback = object : CustomTabsCallback() {
2 override fun onNavigationEvent(

navigationEvent: Int, extras: Bundle?) {
3 when(navigationEvent) {
4 TAB_SHOWN -> {
5 startActivity(Intent(this,

OverlayActivity::class.java)
)

6 }
7 NAVIGATION_STARTED -> {
8 onNavigationStarted()
9 }

10 NAVIGATION_FINISHED -> {
11 onLoadingFinished()
12 }
13 NAVIGATION_FAILED -> {
14 onLoadingFailed()
15 }
16 else -> { }
17 }
18 }
19 }
20

21 val connection = object :
CustomTabsServiceConnection() {

22 override fun onCustomTabsServiceConnected(
name: ComponentName, client:
CustomTabsClient) {

23 session = client.newSession(callback)
24 client.warmup(0)
25 }
26 override fun onServiceDisconnected(

componentName: ComponentName?) { }
27 }
28

29 CustomTabsClient.bindCustomTabsService(context,
packageName, connection)

30 val cctIntent: CustomTabsIntent.Builder =
CustomTabsIntent.Builder(session).build()

31 cctIntent.launchUrl(context, Uri.parse(url))

Listing 2: Minimal Custom Tab attack implementation.

TABLE I: Vulnerability of major mobile browsers to Cus-
tom Tab attack (vulnerable, G# vulnerable but no stealth,
unaffected).

Browser CT support Status code Redirection Timing

Chrome 91 X
Firefox 89 X # # #
Edge 46 X G# G# G#

Brave 1.24 X
Opera 64 7 - - -

Edge. Even though the tested Opera, Brave and Edge versions
are based on Chromium, Opera is the only one of those
browsers that does not support Custom Tabs. Although Firefox
supports them, no callbacks are reported and the browser is
therefore not vulnerable. Chrome as well as Brave and Edge
report events also on redirection, and therefore are vulnerable
to the attack. Even though the attack itself can be carried out in
Edge, stealthiness cannot be achieved. Custom Tabs provided
by Edge are shortly visible before the overlay activity starts,
even on high-end devices. A possible explanation for this is
that the firing of the TAB_SHOWN event may be deferred.

E. Web Security Implications

It is important to stress, that opening a website in a
Custom Tab represents a top-level navigation. Many security
mitigations in place nowadays, such as SameSite cookies,
X-Frame-Options, the frame-ancestors CSP direc-
tive, and Fetch Metadata try to tackle cross-origin attacks.
The Custom Tab attack is, per se, however, not a cross-origin
attack. There is no “cross-origin” component involved, i.e.,
there is no malicious website that tries to leak or access
information from another cross-origin website. Instead, the
Custom Tab attack uses capabilities of the (partially) user-
controlled browser to infer information of top-level contexts.
We note the following distinct advantages of the Custom Tab
attack compared to other known XS-Leaks:
Bypassing SameSite cookies. XS-Leaks such as the ones
identified by Bortz et al. [37] and Cardwell [38] use img,
iframe and script HTML tags to load the target resources
into a malicious website and use the onerror and onload
event handlers to infer information. Depending on the status
code or the time between the events, an attacker can infer
information in a similar way as in the Custom Tab attack.

The SameSite attribute of the Set-Cookie [39] header
can be used to set if a cookie should also be sent in cross-origin
contexts or should be restricted to same-site contexts. When
the attribute is set to either Lax (default value) or Strict,
cross-site cookies are not sent on cross-origin requests, such
as when an image is loaded in a img tag, a website is loaded
in a iframe tag or a script is loaded in a script tag [40].

Setting the attribute to Lax or Strict thus prevents the
attacks that use the img, iframe or script tags. Since
the Custom Tab attack does not rely on cross-origin cookies,
employing SameSite cookies does not prevent this attack.
Bypassing framing protection. Employing response head-
ers that restrict whether a resource can be embed-
ded in an attacker’s website, such as the obsolete
X-Frame-Options (set to DENY or SAMEORIGIN) [41]
and Content-Security-Policy (frame-ancestors
directive) [42] headers do not prevent the Custom Tab attack.
These headers only prevent or mitigate attacks that rely on the
iframe tags for inferring user information.
Bypassing Cross-Origin-Opener-Policy. Other approaches
on XS-Leaks, such as one identified by Masas [43], use
Window.open() to load target websites in a new window
and the window reference as a side-channel to infer user
information. The Cross-Origin-Opener-Policy (COOP) [44]
can be used to make the browser set the reference to the newly
opened website to null. Since the reference is set to null,
the channel cannot be used for inferring user information
anymore.

Since the Custom Tab attack does not use the
Window.open() method, COOP does not prevent this
attack.
Bypassing Fetch Metadata. The Fetch Metadata HTTP re-
quest headers [45] are a set of HTTP headers that provide
th context of the HTTP request to the server. The server can

7

use the context to determine whether the request is malicious
or it should be allowed. This allows employing a Resource
Isolation Policy [46] or a Navigation Isolation Policy [47]
on the server-side. The Sec-Fetch-Site header can be
used to inform the server on how the origin of the request
and the origin of the requested resource are related. The
header distinguishes same-origin, same-site, none
and cross-site. The Sec-Fetch-Mode header specifies
the mode of the request, such as whether it was a top-level
navigation request, a CORS request etc. Moreover, there are
the Sec-Fetch-Dest and Sec-Fetch-User headers that
can also used to employ the Isolation Policies.

Since HTTP requests of a website opened in a Custom
Tab behave as they are open in the underlying browser and
no cross-origin component is involved, Resource Isolation
Policies and Navigation Isolation Policies employed at the
server cannot distinguish malicious requests of the Custom
Tab from legitimate ones.

F. Mitigation

As already discussed in the last section, classical mitigation
strategies for XS-Leaks do not protect against the Custom
Tab attack. Possible mitigation strategies for the attack that
we have identified can be categorized into two classes: (1)
measures that can be taken by Custom Tab providers and (2)
measures that can be taken by the Android operating system.
Custom Tab Providers. Since the main cause of the attack
is the fact that Custom Tabs offer a callback mechanism for
reporting navigation events, a simple approach is to deactivate
this mechanism. Although this would make all three attacks
no longer available, the mitigation would break the intended
functionality of the API.

By implementing a change of the behavior of callbacks
on HTTP and JS redirections, Custom Tab providers can
prevent the redirection-based attack. When only the initial
NAVIGATION_STARTED and NAVIGATION_FINISHED
events are fired, an attacker cannot detect a redirection any-
more.

Custom Tab providers can also enforce opening websites in
a private mode that does not share state with the browser. Since
no state is shared, no information about the browsing activity
in the underlying browser can be inferred. This strategy is used
in SFSafariViewController on iOS.
Android Operating Sytem. Another mitigation strategy that
does not impact the functionality of Custom Tabs is to restrict
the callback mechanism to Custom Tabs in the foreground. The
Android operating system could block navigation callbacks
from the Custom Tab when they are in the background hidden
by another activity. This strategy does not prevent the attack
per se, but hinders the stealthiness. It has no obvious downside,
since Custom Tabs are used to display content for users to see;
hence, there is no need to receive callbacks in the background.

V. WEB VIEW ATTACK

In this section, we discuss another attack on Web Views.
In particular, the vulnerability stems from how plugins of

Android frameworks handle permission requests of content
inside Android WebViews. This flaw allows an attacker to
trick the user into loading a malicious website in a WebView
of a vulnerable application and secretly access the victim’s
microphone and camera. We identified the vulnerability in two
popular plugins of two third-party Android frameworks. We
outline the vulnerability in detail and suggest strategies for
mitigation. We also provide a proof of concept of the attack
for both plugins.4

A. Threat Model

We assume a WebBAtk and a vulnerable application that is
either based on React Native using the React Native WebView
plugin, or on Unity using unity-webview, as described in
more detail further below. The benign application is granted
permission to access the device’s camera and/or microphone.

B. Attack Description

In the Android operating system, every application runs in
a sandbox that isolates it from other applications, as well as
system resources and media devices, such as the microphone
and camera. For this purpose, Android assigns a unique user id
(UID) to every application [48]. To break out of this sandbox,
applications can request permissions to access specific system
capabilities. Consequently, if an app wants to access the
device’s microphone or camera, it must request the associated
permissions. A permission request can be granted or denied
by the user. Since Android 11 (released in 2020), permissions
for access to the device’s location, microphone and camera
can also be granted on a one-time basis [49].

By default, the content inside the WebView is pre-
vented from accessing the media devices that are granted
to the application. The permissions need to be granted
separately by the developer. This can be done by over-
riding the onPermissionRequest function of the
WebChromeClient [50] class. Inside this function, grant
must be called with the corresponding permissions as param-
eters.

For a WebView to access a media device, two conditions
must thus hold: (1) the user must grant the application con-
taining the WebView access to the media device and (2) the
application must grant the WebView permission to access the
media device.

We discovered that both React Native WebView and unity-
webview implement the access control in a faulty way. React
Native [51] is an open-source UI framework for Android and
iOS. React Native WebView [52] is an open-source, cross-
platform WebView for React Native that has about 4.000 stars
and 2.000 forks on GitHub as of August 2021 and is therefore
extensively used. Unity [53] is a cross-platform game engine.
The unity-webview [54] plugin adds WebViews to the Unity
View. unity-webview has about 1.600 stars and over 550 forks
on GitHub as of August 2021.

Our research has shown that both plugins, by default, grant
permission to the content inside the WebView to access

4https://github.com/secweb22-brokenbridge/webview

8

TABLE II: Vulnerable Web View plugins in the top 250 apps.

Permissions RN WebView unity-webiew Others

¤ ∧ . 0 1 (< 1%) 113 (46%)
¤ ∧ + 0 0 28 (11%)
£ ∧ . 2 (< 1%) 0 32 (13%)
£ ∧ + 5 (2%) 0 66 (27%)
£ ∨ + 7 (3%) 0 126 (51%)

the camera and microphone, if the permissions are already
granted to the application. Even though unity-webview offers
the UNITYWEBVIEW_ANDROID_ENABLE_CAMERA flag to
explicitly enable the camera permission in a WebView and the
UNITYWEBVIEW_ANDROID_ENABLE_MICROPHONE flag
for microphone access [54], those media devices can also be
accessed without setting the flags, if the application uses the
microphone or camera for another purpose.

Neither React Native WebView nor unity-webview offers
the possibility to deny access to media devices from the
WebView. This coding style poses a considerable security
risk. An attacker can open a malicious website in a WebView
of a vulnerable application and access those media devices. To
access the camera and microphone of the victim, the malicious
website can use the MediaDevices [55] interface.

Since the vulnerable frameworks automatically grant the
content inside the WebView access to the media devices,
if the application has permission to do so, the victim is not
asked for permissions again when the website is opened. The
attacker-controlled website can also disguise itself as a website
associated with the application to not raise any suspicion.

C. Mitigation

One possible mitigation strategy is to deny the WebView
access to the media devices by default and provide an access
control mechanism to application developers. This would
allow developers to grant access to specific media devices, pos-
sibly only to some explicitly specified origins while preventing
arbitrary origins from accessing sensitive media devices.

Another approach that is already employed in Android 12
(released in 2021) is to display a camera or microphone icon in
the status bar when the camera or microphone, respectively, is
being used [56]. This strategy does not prevent the attack from
happening, but makes the victim aware that the application is
accessing the camera or microphone and raises suspicion.

VI. PRELIMINARY EVALUATION

We performed a preliminary evaluation on real-world An-
droid applications to assess (1) the number of applications
for which the preconditions of the attack on WebViews hold
and (2) the percentage of applications that use the callback
mechanism of Custom Tabs to evaluate the impact of the
mitigation strategy we propose in Section IV-F.

Our dataset comprises the top 250 most downloaded free
Android applications listed in the Google Play Store as of
February 2022, according to Android Rank [57]. We used
the apkeep [58] downloader to obtain 247 APK files which

we first automatically analyzed to identify the permissions
requested by each application and whether one of the two
vulnerable WebView plugins are used. We then checked every
application for the use of the Custom Tabs launchUrl
function and CustomTabsCallback. A subsequent manual
analysis of the apps that use callbacks gave us some insight
on the context in which the feature is used.

WebView plugins. Our results are summarized in Table II.
A total of 7 applications use React Native combined with
the React Native WebView component and, at the same
time, request camera or microphone permissions. Only one
application uses Unity with unity-webview, however it requests
neither of those permissions. We thus found 7 applications
that are potentially vulnerable to the Web View attack. This
amounts to 3% of all analyzed applications and 5% of the
applications that either request microphone or camera access.

Custom Tabs callbacks. Out of the analyzed 247 APK files,
85 (34%) applications use Custom Tabs. We discovered that
57 (23%) of those make use of the callback mechanism, 13
of which use it in advertisement contexts. Deactivating the
Custom Tabs callbacks would thus affect the functionality of
these applications.

We are currently extending our evaluation on Android
applications and we plan to perform a large-scale study on
the Web to measure the number of websites vulnerable to the
Custom Tab attack. This way we will quantify the threat posed
by an AppAtk using CT with respect to a traditional Web
attacker performing XS-Leaks.

VII. ETHICAL CONSIDERATIONS

We reported the Custom Tab attack to Google through the
Chrome Vulnerability Reward Program. The Google Chrome
team initially marked the attack as “intended behavior.” After
further clarification, they reopened the bug report and stated
that they will review the proposed mitigation strategies. There
has, since then, been no activity on it for more than half a
year. We have not received further information from Google
on this matter.

We also disclosed the Web View attack to the React
Native Web View and unity-webview developers. Follow-
ing our recommendation, unity-webview introduced an ac-
cess control mechanism, in which the boolean properties
SetCameraAccess and SetMicrophoneAccess can be
set on the WebView to allow access to the corresponding
media devices. The React Native WebView developers have
not yet responded to our bug report.

VIII. RELATED WORK

There has been extensive research on mobile Web View
security so far. Because mobile Web Views are also heavily
connected with PWAs, we also discuss identified attacks on
those. We furthermore present related work on Web Views
and XS-Leaks.

9

A. Web Views

Steiner [9] gives an overview of what mobile Web Views
are and discusses the support of PWAs by different mobile
Web Views. Luo et al. [3] are one of the first to analyze
vulnerabilities in mobile Web Views. They discuss how ma-
licious websites loaded in Web Views can attack vulnerable
applications and how malicious applications can attack web-
sites loaded in a Web View. Neugschwandtner et al. [4] show
the magnitude of Web View attacks that target vulnerable
applications. They conduct a large-scale evaluation on how
many applications expose interfaces to the web content. They
also propose new threat models on how web content can turn
rogue. Mutchler et al. [2] also conduct a large-scale security
analysis of applications that embed mobile Web Views and
find that 28% of the studied applications have at least one
vulnerability.

Stealing session cookies by using Android WebViews is
discussed by Bhavani [5]. The attack is based on the assump-
tion that a vulnerable application uses the CookieManager
API to get cookies of specific URLs. The implication of
the attack is, however, rather low, since Android WebView
does not share state with other instances and the underlying
browser and the victim would need to log in to websites in
the malicious application.

Chin et al. [6] propose two new attacks on Web Views and
implement a static analyzer to scan for them. Most recently,
Rizzo et al. [59] propose BabelView, an information flow
analysis tool to evaluate the impact of code injection attacks on
Web Views. Using BabelView, they find 4,997 out of 25,000
analyzed applications from the Google Play Store contain
vulnerabilities.

B. Progressive Web Applications (PWAs)

Karami et al. [60] show how service workers, an essential
component of PWAs, can be abused for history sniffing
purposes. Squarcina et al. [61] show how the Cache API used
by service workers can escalate an XSS attack into a machine-
in-the-middle attack. Papadopoulos et al. [62] draw attention
to how features of PWAs can enable an attacker stealthy and
persistent computation in the browser. This allows an attacker
to mine crypto-currencies on the user’s device, run distributed
denial of service (DDoS) attacks against a target, etc.

C. Cross-Site Leaks

The proposed Custom Tab attack is comparable to the
class of cross-site leaks. The XS-Leaks Wiki [30] contains
a summarization of known XS-Leak attack vectors as well as
possible mitigation strategies and is a perfect source to get an
overview of the multitude of cross-site leaks.

The first identified cross-site leaks targeted the detection
of the authentication status of a user. Such attacks were,
among others, proposed by Grossman and Hanson [63] and
Cardwell [38]. Bortz et al. [37] showed that it is even possible
to detect fine-grained properties such as the amount of items
in a shopping cart by using a time-channel.

Gelernter et al. [64] refined the time-channel attack, which
makes it possible to infer even more fine-grained sensitive user
information, such as if a user has sent another user an email
containing a specific keyword. They use the search feature of
services such as Gmail and Bing and listen to the time it takes
to receive the response to the search query. Depending on the
response time, they can draw the respective conclusions.

Sudhodanan et al. [65] conduct a systematization of known
cross-site leak attacks, categorize them in attack classes and
propose a tool called Basta-COSI to automatically find cross-
site leak attacks on target websites.

IX. CONCLUSION

In this paper, we have proposed two new attacks on Android
Web View components, which are used to render web content
inside native applications.

In the first attack, we showed how the Custom Tab feature
can be abused to leak user information on target websites
stealthily. The attack is enabled by the callback mechanism
of Custom Tabs, which reports navigation events, such as
when and if a page finished loading successfully, to the host
application. Stealthiness can be achieved because the Android
operating system lets other activities overlay Custom Tab
activities. Since the attack is not a classical cross-origin attack,
web-based prevention mechanisms in place nowadays do not
prevent the attack. Instead, we have presented mitigation
strategies that can be taken by the Custom Tab providers and
the Android operating system.

In the second attack, we showed how a vulnerability in
two popular third-party WebView plugins for two Android
frameworks enables an attacker operating a malicious website
loaded in a WebView to use the application’s camera and
microphone permission to access those media devices. A
possible mitigation strategy is to deny the content inside
the WebView access to those media devices by default and
employ an access control mechanism or use microphone and
camera indicators to indicate access to the media device.

We are currently extending our preliminary evaluation to a
large-scale analysis on the most popular Android applications
and websites to assess the prevalence of the identified attacks
and the impact of the proposed mitigations.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
constructive feedback. This work has been partially supported
by the European Research Council (ERC) under the European
Union’s Horizon 2020 research (grant agreement 771527-
BROWSEC). This research has further received funding from
the Vienna Science and Technology Fund (WWTF) through
project ICT19-056 (IoTIO), and SBA Research (SBA-K1), a
COMET Centre within the framework of COMET – Com-
petence Centers for Excellent Technologies Programme and
funded by BMK, BMDW, and the federal state of Vienna.
The COMET Programme is managed by FFG.

10

REFERENCES

[1] Statcounter. Desktop vs Mobile vs Tablet Market Share Worldwide.
Accessed on: Aug. 31, 2021. [Online]. Available: https://gs.statcounter.
com/platform-market-share/desktop-mobile-tablet/worldwide

[2] P. Mutchler, A. Doupé, J. Mitchell, C. Kruegel, and G. Vigna, “A Large-
Scale Study of Mobile Web App Security,” in Proceedings of the IEEE
Mobile Security Technologies Workshop (MoST), 2015.

[3] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin, “Attacks on WebView in
the Android System,” in Proceedings of the Annual Computer Security
Applications Conference (ACSAC), 2011.

[4] M. Neugschwandtner, M. Lindorfer, and C. Platzer, “A View to a Kill:
WebView Exploitation,” in Proceedings of the USENIX Workshop on
Large-Scale Exploits and Emergent Threats (LEET), 2013.

[5] B. Anantapur Bache, “Cross-site Scripting Attacks on Android Web-
View,” International Journal of Computer Science and Network, vol. 2,
04 2013.

[6] E. Chin and D. A. Wagner, “Bifocals: Analyzing WebView Vulnera-
bilities in Android Applications,” in Proceedings of the International
Workshop on Information Security Applications (WISA), 2013.

[7] MDN Web Docs. Add to home screen. Accessed on: March
1, 2022. [Online]. Available: https://developer.mozilla.org/en-US/docs/
Web/Progressive web apps/Add to home screen

[8] Chrome Developers. (2020, Feb.) Trusted Web Activity. Accessed on:
June 27, 2021. [Online]. Available: https://developer.chrome.com/docs/
android/trusted-web-activity/overview/

[9] T. Steiner, “What is in a Web View? An Analysis of Progressive Web
App Features When the Means of Web Access is not a Web Browser,”
in Proceedings of The Web Conference (WebConf), 2018.

[10] Chrome Developers. (2021, Feb.) Custom Tabs. Accessed on: Apr. 18,
2021. [Online]. Available: https://developer.chrome.com/docs/android/
custom-tabs/overview

[11] Android Developers. Web-based content. Accessed on: Apr. 20, 2021.
[Online]. Available: https://developer.android.com/guide/webapps

[12] Chrome Developers. (2014, Feb.) WebView for Android. Accessed on:
June 27, 2021. [Online]. Available: https://developer.chrome.com/docs/
multidevice/webview/

[13] Android Developers. Building web apps in WebView. Accessed on:
July 11, 2021. [Online]. Available: https://developer.android.com/guide/
webapps/webview

[14] ——. WebViewClient. Accessed on: July 9, 2021. [Online]. Available:
https://developer.android.com/reference/android/webkit/WebViewClient

[15] Introduction to Activities. Accessed on: March 1, 2022.
[Online]. Available: https://developer.android.com/guide/components/
activities/intro-activities

[16] Android Developers. CustomTabsSession. Accessed on: June 27, 2021.
[Online]. Available: https://developer.android.com/reference/androidx/
browser/customtabs/CustomTabsSession

[17] A. C. Bandarra. (2020, July) Best Practices. Accessed on: June 14,
2021. [Online]. Available: https://developer.chrome.com/docs/android/
custom-tabs/best-practices/

[18] Android Developers. CustomTabsCallback. Accessed on: June 5, 2021.
[Online]. Available: https://developer.android.com/reference/androidx/
browser/customtabs/CustomTabsCallback

[19] P. Conn. (2019, Aug.) Quick Start Guide. Accessed on: July 11,
2021. [Online]. Available: https://developer.chrome.com/docs/android/
trusted-web-activity/quick-start/

[20] GitHub. postMessage support? - Issue #55 - GoogleChrome/android-
browser-helper. Accessed on: July 11, 2021. [Online]. Available:
https://github.com/GoogleChrome/android-browser-helper/issues/55

[21] Apple Developer Documentation. WKWebView. Accessed on: Apr. 18,
2021. [Online]. Available: https://developer.apple.com/documentation/
webkit/wkwebview

[22] ——. SFSafariViewController. Accessed on: Apr. 19,
2021. [Online]. Available: https://developer.apple.com/documentation/
safariservices/sfsafariviewcontroller

[23] ——. allowsContentJavaScript. Accessed on July 11, 2021.
[Online]. Available: https://developer.apple.com/documentation/webkit/
wkwebpagepreferences/3552422-allowscontentjavascript

[24] ——. WKUserContentController. Accessed on: Apr. 18, 2021.
[Online]. Available: https://developer.apple.com/documentation/webkit/
wkusercontentcontroller

[25] Android Developers. Connect to the network. Accessed on: June 5,
2021. [Online]. Available: https://developer.android.com/training/basics/
network-ops/connecting.html

[26] Z. Zhang, W. Diao, C. Hu, S. Guo, C. Zuo, and L. Li, “An Empirical
Study of Potentially Malicious Third-Party Libraries in Android Apps,”
in Proceedings of the ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec), 2020.

[27] J. Wang, Y. Xiao, X. Wang, Y. Nan, L. Xing, X. Liao, J. Dong,
N. Serrano, H. Lu, X. Wang, and Y. Zhang, “Understanding Malicious
Cross-library Data Harvesting on Android,” in Proceedings of the
USENIX Security Symposium, 2021.

[28] Android Developers. Intents and Intent Filters. Accessed on: June
30, 2021. [Online]. Available: https://developer.android.com/guide/
components/intents-filters

[29] A. Barth, C. Jackson, and J. Mitchell, “Securing Frame Communication
in Browsers,” Communications of The ACM (CACM), vol. 52, pp. 17–30,
01 2008.

[30] XS Leaks Wiki. Accessed on: Aug. 10, 2021. [Online]. Available:
https://xsleaks.com/

[31] IETF. RFC2616: Hypertext Transfer Protocol – HTTP/1.1. Accessed
on: July 16, 2021. [Online]. Available: https://datatracker.ietf.org/doc/
html/rfc2616

[32] MDN Web Docs. Redirections in HTTP. Accessed on: June 10,
2021. [Online]. Available: https://developer.mozilla.org/en-US/docs/
Web/HTTP/Redirections

[33] ——. PerformanceNavigationTiming API. Accessed on: June 14, 2021.
[Online]. Available: https://developer.mozilla.org/en-US/docs/Web/API/
PerformanceNavigationTiming

[34] Android Developers. Understand Tasks and Back Stack. Accessed on:
June 17, 2021. [Online]. Available: https://developer.android.com/guide/
components/activities/tasks-and-back-stack

[35] ——. ComponentActivity. Accessed on: June 9, 2021.
[Online]. Available: https://developer.android.com/reference/androidx/
activity/ComponentActivity#onBackPressed()

[36] ——. CustomTabsClient. Accessed on: June 09, 2021.
[Online]. Available: https://developer.android.com/reference/androidx/
browser/customtabs/CustomTabsClient#warmup(long)

[37] A. Bortz and D. Boneh, “Exposing Private Information by Timing Web
Applications,” in Proceedings of the International Conference on World
Wide Web (WWW), 2007.

[38] M. Cardwell. (2011, Jan.) Abusing HTTP Status Codes to
Expose Private Information. Accessed on: June 14, 2021. [Online].
Available: https://www.grepular.com/Abusing HTTP Status Codes to
Expose Private Information

[39] MDN Web Docs. Set-Cookie. Accessed on: Feb. 19, 2022.
[Online]. Available: https://developer.mozilla.org/en-US/docs/Web/
HTTP/Headers/Set-Cookie

[40] ——. Using HTTP cookies. Accessed on: June 14, 2021. [Online].
Available: https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

[41] ——. X-Frame-Options. Accessed on: June 14, 2021. [On-
line]. Available: https://developer.mozilla.org/en-US/docs/Web/HTTP/
Headers/X-Frame-Options

[42] ——. CSP: frame-ancestors. Accessed on: June 14, 2021.
[Online]. Available: https://developer.mozilla.org/en-US/docs/Web/
HTTP/Headers/Content-Security-Policy/frame-ancestors

[43] R. Masas. (2018, Nov.) Patched Facebook Vulnerability Could Have
Exposed Private Information About You and Your Friends. Accessed
on: Feb. 19, 2022. [Online]. Available: https://www.imperva.com/blog/
facebook-privacy-bug/

[44] MDN Web Docs. Cross-Origin-Opener-Policy. Accessed on: Feb.
19, 2022. [Online]. Available: https://developer.mozilla.org/en-US/docs/
Web/HTTP/Headers/Cross-Origin-Opener-Policy

[45] W3C. (2021, Jul.) Fetch Metadata Request Headers. Accessed on: Mar.
30, 2022. [Online]. Available: https://www.w3.org/TR/fetch-metadata/

[46] L. Weichselbaum. (2020, Jun.) Protect your resources from web attacks
with Fetch Metadata. Accessed on: Feb. 19, 2022. [Online]. Available:
https://web.dev/fetch-metadata/

[47] XS Leaks Wiki: Navigation Isolation Policy. Accessed on: Feb. 23, 2022.
[Online]. Available: https://xsleaks.dev/docs/defenses/isolation-policies/
navigation-isolation

[48] Android Open Source Project. Application Sandbox. Accessed on:
July 2, 2021. [Online]. Available: https://source.android.com/security/
app-sandbox

11

[49] Android Developers. Request app permissions. Accessed on: July
2, 2021. [Online]. Available: https://developer.android.com/training/
permissions/requesting

[50] ——. WebChromeClient. Accessed on: July, 2021. [On-
line]. Available: https://developer.android.com/reference/android/webkit/
WebChromeClient

[51] React Native. React Native · Learn once, write anywhere. Accessed on:
July 23, 2021. [Online]. Available: https://reactnative.dev/

[52] GitHub. react-native-webview/react-native-webview. Accessed on: July
23, 2021. [Online]. Available: https://github.com/react-native-webview/
react-native-webview

[53] Unity. Unity Real-Time Development Platform. Accessed on: July 23,
2021. [Online]. Available: https://unity.com/

[54] GitHub. gree/unity-webview. Accessed on: July 23, 2021. [Online].
Available: https://github.com/gree/unity-webview

[55] MDN Web Docs. MediaDevices. Accessed on: July 4, 2021.
[Online]. Available: https://developer.mozilla.org/en-US/docs/Web/API/
MediaDevices

[56] Android Developers. Behavior changes: all apps. Accessed on: Feb. 18,
2022. [Online]. Available: https://developer.android.com/about/versions/
12/behavior-changes-all

[57] Android Rank. List of Android Most Popular Google Play Apps.
Accessed on: Apr. 25, 2021. [Online]. Available: https://www.
androidrank.org/android-most-popular-google-play-apps?price=free

[58] GitHub. EFForg/apkeep. Accessed on: Feb. 20, 2022. [Online].
Available: https://github.com/EFForg/apkeep

[59] C. Rizzo, L. Cavallaro, and J. Kinder, “BabelView: Evaluating the

Impact of Code Injection Attacks in Mobile Webviews,” in Proceedings
of the International Symposium on Research in Attacks, Intrusions, and
Defenses (RAID), 2017.

[60] S. Karami, P. Ilia, and J. Polakis, “Awakening the Web’s Sleeper Agents:
Misusing Service Workers for Privacy Leakage,” in Proceedings of the
Annual Network and Distributed System Security Symposium (NDSS),
2021.

[61] M. Squarcina, S. Calzavara, and M. Maffei, “The Remote on the Local:
Exacerbating Web Attacks Via Service Workers Caches,” in Proceedings
of the IEEE Workshop on Offensive Technologies (WOOT), 2021.

[62] P. Papadopoulos, P. Ilia, M. Polychronakis, E. P. Markatos, S. Ioannidis,
and G. Vasiliadis, “Master of Web Puppets: Abusing Web Browsers
for Persistent and Stealthy Computation,” in Proceedings of the Annual
Network and Distributed System Security Symposium (NDSS), 2019.

[63] J. Grossman and R. Hansen. (2006, Nov.) Detecting
States of Authentication With Protected Images.
Accessed on: Feb. 19, 2022. [Online]. Available:
https://web.archive.org/web/20150417095319/http://ha.ckers.org/blog/
20061108/detecting-states-of-authentication-with-protected-images/

[64] N. Gelernter and A. Herzberg, “Cross-Site Search Attacks,” Proceedings
of the ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2015.

[65] A. Sudhodanan, S. Khodayari, and J. Caballero, “Cross-Origin State In-
ference (COSI) Attacks: Leaking Web Site States through XS-Leaks,” in
Proceedings of the Network and Distributed System Security Symposium
(NDSS), 2020.

12

