
IoTFlow: Inferring IoT Device Behavior at Scale through Static
Mobile Companion App Analysis

David Schmidt
TU Wien

dschmidt@seclab.wien

Carlotta Tagliaro
TU Wien

carlotta@seclab.wien

Kevin Borgolte
Ruhr University Bochum
kevin.borgolte@rub.de

Martina Lindorfer
TU Wien

martina@seclab.wien

ABSTRACT

The number of “smart” devices, that is, devices making up the
Internet of Things (IoT), is steadily growing. They suffer from
vulnerabilities just as other software and hardware. Automated
analysis techniques can detect and address weaknesses before
attackers can misuse them. Applying existing techniques or devel-
oping new approaches that are sufficiently general is challenging
though. Contrary to other platforms, the IoT ecosystem features
various software and hardware architectures.

We introduce IoTFlow, a new static analysis approach for IoT
devices that leverages their mobile companion apps to address the
diversity and scalability challenges. IoTFlow combines Value Set
Analysis (VSA) with more general data-flow analysis to automat-
ically reconstruct and derive how companion apps communicate
with IoT devices and remote cloud-based backends, what data they
receive or send, and with whom they share it. To foster future work
and reproducibility, our IoTFlow implementation is open source.

We analyze 9,889 manually verified companion apps with IoT-
Flow to understand and characterize the current state of security
and privacy in the IoT ecosystem, which also demonstrates the
utility of IoTFlow. We compare how these IoT apps differ from
947 popular general-purpose apps in their local network commu-
nication, the protocols they use, and who they communicate with.
Moreover, we investigate how the results of IoTFlow compare to
dynamic analysis, with manual and automated interaction, of 13 IoT
devices when paired and used with their companion apps. Overall,
utilizing IoTFlow, we discover various IoT security and privacy
issues, such as abandoned domains, hard-coded credentials, expired
certificates, and sensitive personal information being shared.

CCS CONCEPTS

• Security and privacy→ Systems security.

KEYWORDS

Internet of Things (IoT); IoT security; IoT privacy; companion apps;
network analysis; static analysis.
ACM Reference Format:

David Schmidt, Carlotta Tagliaro, Kevin Borgolte, and Martina Lindorfer.
2023. IoTFlow: Inferring IoT Device Behavior at Scale through Static Mobile
CompanionAppAnalysis. In Proceedings of the 2023 ACM SIGSACConference
on Computer and Communications Security (CCS ’23), November 26–30, 2023,
Copenhagen, Denmark. ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/3576915.3623211

This work is licensed under a Creative Commons Attribution 4.0 International License.
CCS ’23, November 26–30, 2023, Copenhagen, Denmark.
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0050-7/23/11.
https://doi.org/10.1145/3576915.3623211

1 INTRODUCTION

The number of Internet of Things (IoT) devices, that is, smart
devices, is rising rapidly: Forecasts expect the number of IoT devices
to grow to 25.4 billion in 2030 [45]. These devices collect data
about their users and environment to make smart decisions. For
example, to call for help in an emergency, a smartwatch may collect
health indicators. This means that users need to trust them to
handle their data with care. Unfortunately, smart devices have
gained notoriety for their security and privacy issues, leading to
the catchphrase “the S in IoT stands for security.” Notably, employees
of Ring had unauthorized access to users’ security camera footages
uploaded to their cloud backend [54]. Similarly, the European Union
(EU) recalled kids’ smartwatches because they exposed sensitive
information and could be easily compromised by attackers [16].

Prior work extensively analyzed open and closed source desktop
and mobile applications (apps) for security and privacy issues, but
analyzing smart devices remains an open challenge. Related work in
this domain mainly focused on firmware vulnerabilities [21, 27] or
on analyzing a handful of selected devices [23, 44, 60, 81, 91, 96]. This
does, however, not scale to the wide variety of smart devices with
diverse software and hardware architectures. Intuitively, buying
thousands of devices to analyze them in a lab setting is financially
and practically infeasible.

Therefore, to enable the large-scale discovery and analysis of se-
curity and privacy issues in the IoT ecosystem,we propose IoTFlow,
a novel static analysis approach for IoT devices via their mobile
companion apps. These apps play an important role in controlling
IoT devices directly and can serve as intermediaries to their cloud
backends. Practically all IoT devices have such apps available for
Android and iOS [21, 62, 63, 80]. They allow users to setup and
control their devices locally, via the local network or Bluetooth,
or remotely, via the Internet. For some devices, their apps are the
only gateway to the Internet. Overall, the apps store and process
information collected by the IoT devices and about the remote
infrastructure. Given the nature of data that the devices collect and
use, it may also be highly sensitive. Further, attackers could misuse
apps with hard-coded information (e.g., endpoints, credentials) to
eavesdrop on others’ private information, or distribute malicious
content via misconfigured IoT backends or abandoned domains.
Using a misconfigured backend, they could exploit vulnerabilities
to create a new botnet of hundreds of thousands of devices, even if
the devices are not directly reachable on the Internet.

The basic idea of evaluating the security and privacy of IoT
devices indirectly by studying their companion apps has been
explored by prior work. For example, Wang et al. [94] leveraged it
to identify rebranded devices by searching for similar apps. They
find vulnerabilities in other devices because of “private labeling”
and component re-use. Chen et al. [21] and Redini et al. [80] used
companion apps to inform fuzzing IoT devices, while Zuo et al. [102],

https://doi.org/10.1145/3576915.3623211
https://doi.org/10.1145/3576915.3623211
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3576915.3623211


CCS ’23, November 26–30, 2023, Copenhagen, Denmark. David Schmidt, Carlotta Tagliaro, Kevin Borgolte, and Martina Lindorfer

Sivakumaran et al. [85, 86], and Zhao et al. [99] leveraged compan-
ion apps to identify Bluetooth Low Energy (BLE) issues. Wang et
al. [93] statically analyzed Samsung SmartThings apps, which are
part of the SmartThings smart hub IoT ecosystem.

Existing approaches focus on re-identifying already known is-
sues shared among multiple devices (previously discovered through
traditional techniques), still require physical devices (fuzzing), focus
on a subset of companion apps (BLE), or analyze conceptually sim-
ple apps that are less widespread than general companion apps [64]
(e.g., Samsung SmartThings apps, which are event flow graphs,
rather than full apps; similar to “If This Then That” [47]).

In this paper, we introduce a new static analysis approach, IoT-
Flow, that substantially advances this basic idea. Our new ap-
proach enables us to gain new fundamental knowledge about the
companion apps and corresponding smart devices at scale without
actually requiring the physical device. We focus on addressing two
crucial limitations of state-of-the-art techniques: First, we discover
new issues automatically instead of re-identifying existing issues,
which would require a priori knowledge that they exist. Second,
we investigate individual devices instead of assuming that groups
of devices share or re-use components. Specifically, our approach
enables us to infer and gain new insights into the security and
privacy of companion apps and their corresponding smart devices
by reconstructing information about the used network protocols,
endpoints, and the data they receive. With our approach, we can
answer the following important but open questions concerning
security and privacy in the IoT ecosystem:
RQ1: How do companion apps and devices communicate?
RQ2: Who are companion apps communicating with?
RQ3: Which data are companion apps sharing (and how)?
Specifically, our approach (1) identifies communication trigger
points, (2) uses Value Set Analysis (VSA) to reconstruct network-
related information on where data is coming from or transferred
to, such as the URLs that are being contacted, (3) utilizes Data-flow
Analysis (DFA) to determine what data is being accessed, shared,
and with whom, and (4) assesses the corresponding impact.

We evaluate our approach on 9,889 unique and manually verified
companion apps [50, 62, 63] to show that we can analyze IoT devices
accurately and at scale. Additionally, we study the differences in
network behavior between the companion apps and 947 popular
general-purpose apps that we collected. Finally, we verify the accu-
racy of IoTFlow and compare it with dynamic analysis, for which
we interacted with 13 IoT devices via their companion apps.
In this paper, we make the following contributions:
• We introduce IoTFlow, a new static program analysis approach
utilizing Value Set Analysis (VSA) and Data-flow Analysis (DFA)
to analyze the behavior of IoT devices based on their companion
apps’ interactions with them and their remote backend.

• We show that IoTFlow can accurately infer the network behavior
of companion apps at scale by analyzing 9,889 IoT apps.

• We analyze how and with whom companion apps communicate,
what data they share locally with devices and remotely, and we
highlight their differences to general apps.

• Using IoTFlow, we automatically discover rampant security and
privacy issues in the IoT ecosystem, such as abandoned control
domains, hard-coded credentials, expired certificates, or shared
Personally Identifiable Information (PII).

Mobile Phone

Smart Hub

Sm
ar

t D
ev

ic
es

Cloud Backends

LO
C

AL

REM
O

TE

Figure 1: Overview of the IoT ecosystem and its command

and control scenarios, including apps as intermediaries.

Artifacts. To foster reproducibility and future research, we make
our open source implementation and analysis artifacts available at
https://github.com/SecPriv/iotflow.

2 MOTIVATION

Following, we motivate IoTFlow with the need for at-scale IoT
device behavior analysis, the interdependence of companion apps
and IoT infrastructure, and the unique features of companion apps
compared to general-purpose apps.

Large-scale IoT Device Behavior Analysis. The plethora of security
and privacy issues that supposedly plague smart devices are a
well-hypothesized problem in the security community and often
anecdotally confirmed when yet another real-world issue is found
and the press is reporting on it. Unfortunately, we currently lack
techniques to discover such issues and also other vulnerabilities
in smart devices automatically and at scale. State-of-the-art ap-
proaches focus on analyzing the devices’ firmware [27], requiring
tedious and substantial manual effort to tailor it to each individual
device, possibly even each hardware revision of a device. It also
suffers from the many challenges of analyzing firmware, such as
having to deduce and infer what sensors and actuators exist, model
them, and understand how the firmware is communicating with it.
Even if it would be feasible to scale such approaches to the many
devices, it is also challenging to automatically gather thousands
of firmware images, as devices use different processes to retrieve
and update their firmware. At the same time, more and more IoT
devices are being manufactured and used. Thus, it remains an open
problem how to analyze the increasing number of diverse devices.

For large open source projects, the average lifetime of vulnerabil-
ities is multiple years [1, 55]. Considering the profit-driven nature
of the IoT ecosystem, it appears likely that security is indeed an
afterthought in the IoT ecosystem and vulnerabilities might remain
unpatched similarly long or even longer. Automated large-scale
analysis allows us to promptly identify vulnerabilities and mitigate
them. Moreover, even when automated analysis cannot replace in-
depth analysis, it still helps developers to identify issues and address
them. Being able to accurately analyze how IoT devices truly behave
also informs privacy policy and behavior of (privacy-conscious)
consumers. Practical large-scale automated analysis provides the
much-needed foundation and knowledge to better understand IoT
devices and improve their security and privacy.

IoT Control Infrastructure. The fundamental idea of smart devices
is that they coordinate and cooperate with other devices, that is,
they do not work in isolation. Typically, the devices communicate
with companion apps, smart hubs, or remote cloud-based backends
(see Figure 1), the latter of which may distributed over different

https://github.com/SecPriv/iotflow


IoTFlow: Inferring IoT Device Behavior at Scale through Static Mobile Companion App Analysis CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

regions world-wide [83]. Users interact with the devices almost
exclusively via their companion apps. If a device supports Wi-Fi,
then the app may communicate with the device over the local
network or the Internet. If a device does not support Wi-Fi but
only uses Bluetooth, then all device-to-cloud communication needs
to pass through the app or a hub. Moreover, due to missing user
interfaces, updating a device’s firmware frequently happens via
the app [94]. That is, the apps play a central role during the setup,
operation, and update of the devices. In fact, many devices cannot be
set up without using a device that can run the app. Thus, apps must
contain some information about the devices and their behavior, and
they provide a unique analysis opportunity.

General-purpose Apps vs. Companion Apps. Compared to general-
purpose apps, companion apps face different challenges and in-
troduce new threats. Generally, mobile operating systems restrict
access to sensitive data and sensors (e.g., through Android or iOS
permissions). However, this does not apply to data collected through
smart devices. Users also lack visibility and control over the data
the devices collect and share. It is crucial to investigate the threat of
collusion between device and app, especially because it circumvents
existing defenses and allows to build more accurate user profiles
by combining PII and data collected by both [82].

Advertisements (ads) and trackers to collect user data for be-
havioral targeting appear widely in general-purpose apps [79, 82,
90]. These services are attractive for developers to monetize their
apps [41]. For companion apps, one might assume that the business
model centers around selling the devices. However, related studies
showed that these apps and even devices themselves include ads and
tracking [60, 81, 91]. In hindsight, considering the IoT environment
and collusion potential, this makes sense: It is additional income.
For example, companion apps can interact with the local network
to discover and manage devices (a permission often required to set
up the device), which is data general-purpose apps have difficulty to
collect, and which is also useful for advertisement or tracking [52].
Prior work on network behavior and PII leakage of apps mainly
considers traffic sent to remote servers. For IoT devices that use local
communication, via Bluetooth or Wi-Fi, app-to-device or device-
to-app communication has additional significance [87]. A smart
device only using Bluetooth can collude with a companion app to
“clean” sensitive data: receive it, encode it in some way, and send
it back to the app, which sends it to the tracker. Existing ways to
identify and block such behavior in general-purpose apps cannot
address the challenges of the IoT environment, like collusion.

3 IOTFLOW

We introduce IoTFlow, a new static analysis approach for compan-
ion apps. We aim to better understand the behavior of IoT devices
without requiring the physical device.

IoTFlow itself has two main phases (see Figure 2): Value Set
Analysis (VSA) and Data-flow Analysis (DFA). With VSA, we iden-
tify trigger points, that is, sources and sinks of interesting (network)
activities. This appears trivial at first, but it is important to realize
that (1) we expect a substantial amount of communication, as smart
devices are meant to communicate and coordinate extensively, and
(2) we need to be able to determine the communication endpoint.
For example, a user might expect and accept that the companion

app shares their location to turn on their heating when they are
on their way home. But, most users would likely object if it is sent
to an advertisement company. Enumerating all potential sources
and sinks will lead to inaccurate results and render the analysis
impractical. Instead, we need to distinguishwhere apps send data, to
the device or a remote service, to which services, and utilizingwhich
network protocols. We accurately reconstruct this information
leveraging VSA (Section 3.1) and use it to identify precise sources
and sinks for our DFA (Section 3.2).

For reconstructed endpoints, which may be third-party services,
we then (1) categorize them based on their purpose, (2) analyze
their geographic locations, and (3) test for abandoned domains. This
allow us to evaluate if communication would be expected and assess
their security and privacy impact. For example, a privacy-conscious
user within the EU may not expect that their device sends data to
a country not bound to the GDPR. Similarly, abandoned domains
can lead to devices being taken over by attackers [17, 24, 74].

With DFA, we can then precisely assess which data companion
apps share, with whom they communicate, and how. Specifically, we
analyze the data-flow for data from the identified and categorized
trigger points as well as from sensitive data sources (e.g., GPS
location) to relevant sinks.

Motivating Example. Considering the examples in Listing 1 and
Listing 2, we (1) need to reconstruct the destination of the Message
Queuing Telemetry Transport (MQTT) broker (Listing 2, line 15),
and (2) trace the data flow from the Bluetooth source (Listing 1,
line 3) to where the message is published (Listing 2, line 18). An
additional challenge is that the data is passed from Listing 1 line 6
to Listing 2 line 7 via Inter Component Communication (ICC).
Traditional approaches would miss this example. However, we can
reconstruct the keys of the ICC during VSA and then bridge the
connection via the reconstructed keys, enabling us to perform more
precise DFA across the ICC boundary.

3.1 Value Set Analysis

Value Set Analysis (VSA) is a program analysis technique to recon-
struct values at specific program points.We utilize it to gain insights
about the communication of IoT apps and to accurately handle ICC
for our DFA. VSA has been used by related work before [101, 102],
however, with the focus on reconstructing Application Program-
ming Interface (API) keys or Universally Unique Identifiers (UUIDs)
of BLE to identify vulnerable implementations of the BLE pairing
process. That is, related work reconstructed primarily strings using
manually derived rules, while IoTFlow supports arbitrary objects
(as is required to precisely reconstruct endpoints, like in Listing 2).

Pre-Processing ➊. We implemented our IoTFlow prototype in
Java and target Android. We use Soot [89] to parse Dalvik byte
code from Android apps. It translates the byte code into the Jimple
Intermediate Representation (IR), which simplifies our analysis
(e.g., by splitting nested instructions). Notably, both Kotlin and
Java Android apps are compiled into Dalvik code, and, in turn,
IoTFlow can readily analyze both types of apps. In preparation for
the forward computation step, we also translate the Dalvik byte
code into Java byte code with dex2jar [71] because Java cannot
load classes directly from the Dalvik byte code.



CCS ’23, November 26–30, 2023, Copenhagen, Denmark. David Schmidt, Carlotta Tagliaro, Kevin Borgolte, and Martina Lindorfer

Endpoint 
Reconstruction

ICC Key 
Reconstruction

Local vs. 
Remote 
Endpoints

Direct Data Flows
(Source to Sink)

Indirect Data Flows
(Source to ICC to Sink)

Fo
rw

ar
d

Si
m

ul
at

io
n 

VA
LU

E 
SE

T 
A

N
A

LY
SI

S
D

AT
A 

FL
O

W
Po

st
-

Pr
oc

es
si

ng Connecting 
Reconstructions to
Sources/ICC/Sinks

5 6

87

4

Pr
e-

Pr
oc

es
si

ng

1
Pre-Processing
(Lifting to Jimple)

Identification of Sinks
(Android APIs + IoT Libraries)

2

Endpoint 
IdentificationB

ac
kw

ar
d

Tr
ac

in
g

3
? ??

ICC Key 
Identification

?? ?

Figure 2: Overview of IoTFlow. We use VSA to reconstruct

endpoints, cryptographic data, and ICC keys for the flow

analysis. We use flow analysis to find data leaks, and connect

request/response data with endpoints. With the ICC infor-

mation of the VSA, we support data flows involving ICC.

Identification of Sinks ➋. IoTFlow starts at interesting sinks
tracing backward their values. We analyze network-related sinks
from Android, Java, and 19 manually selected popular network com-
munication libraries, focusing on IoT application layer messaging
protocols (e.g., MQTT, Constrained Application Protocol (CoAP),
Advanced Message Queuing Protocol (AMQP), and Extensible Mes-
saging and Presence Protocol (XMPP)) [11, 70]. Additionally, we
consider ICC and cryptographic methods as sinks. We later use the
reconstructed ICC information to bridge the ICC boundary during
DFA. As apps might encrypt data before sending it, we also examine
cryptographic methods.

Backward Tracing ➌. We then trace back through the program,
starting at the identified sinks to all program points where the app
modifies the values we are interested in. Naturally, this yields an
over-approximate trace set. For example, if we want to reconstruct
the parameter passed to MqttManager in Listing 2, then our recon-
struction starts at line 15 (following ). We trace back the value
of config.endpoint to line 14, to line 8, to lines 1–3, until we have
traced all variables on which config depends.

Forward Simulation ➍. In the next step, we reconstruct the actual
value set. Here, we must reconstruct arbitrary objects passed to the
sinks, or we would miss the value of config in our example. That
is, only reconstructing string operations is insufficient. Instead, we
adapt our value reconstruction to handle arbitrary objects from
any classes defined by the app, such as the MqttConfig class. We
utilize reflection and forward simulate the backward trace, using the
classes and methods as the app would do while normally executing
it. Using reflection for simulating execution paths has a further
advantage: We can handle code where the app itself uses reflection,
which prior work cannot. However, reflection also introduces new
challenges that we need to address:

1 String BLE_DATA = "device";
2 @Override
3 void onCharacteristicRead(BluetoothGattCharacteristic bgc, /*...*/) {
4 Intent intent = new Intent(DeviceActivity.class)
5 byte[] value = bgc.getValue();
6 intent.putExtra(BLE_DATA, parseData(value));
7 this.startActivity(intent);
8 }

Listing 1: Simplified example code that reads device data via

BLE and sends it via an Intent (ICC). Arrows on the left show

VSA, and arrows on the right show DFA. We reconstruct the

ICC key “device,” marked yellow, via VSA (line 1). The

arrows show the data flow from source to the ICC sink,

via purple statements. The flow continues green in Listing 2.

1 MqttConfig config = new MqttConfig();
2 config.setEndpoint("example.com");
3 config.setTopic("things/Wifi_device");
4 class DeviceActivity {
5 @Override
6 void onCreate(Bundle bundle) {
7 String data = getIntent().getStringExtra(BLE_DATA);
8 Mqtt mqtt = new Mqtt(config);
9 mqtt.publish(new MqttMessage(data, config.topic));
10 }
11 }
12 class Mqtt {
13 MqttManager mqttManager;
14 Mqtt(MqttConfig config) {
15 this.mqttManager = new MqttManager(config.endpoint);
16 }
17 void publish(MqttMessage m) {
18 this.mqttManager.publishString(m.data, m.topic);
19 }
20 }

Listing 2: Simplified example code of an activity that receives

BLE data and publishes it via MQTT. Arrows on the left

show identification and reconstruction via VSA, marked .

Arrows on the right show DFA. Connecting reconstructions

are marked , via blue statements. The data flow from ICC

source to sink, completing the flow from source to ICC sink

of Listing 1, is marked , through green statements. We

highlight the reconstructed ICC key “device” yellow again.

(1) Android Methods. Some data might not be available stati-
cally, like user input. Additionally, we cannot simulate Android
methods with reflection because only stub implementations are
available and we use placeholders instead (e.g., intents, shared
preferences, and database).

(2) Non-Terminating Methods. Simulating arbitrary methods
with reflection can also lead to non-termination, such as when
it waits for an IoT device to connect. We mitigate this issue by
terminating it after two seconds. We determined this thresh-
old empirically as a trade-off between precision and time. In
practice, most instructions finish within a fraction of a second.

(3) Partially Reconstructed Values. Partially reconstructed val-
ues can cause us to miss values. We may simulate a substring
operation, but the analysis does not reconstruct the whole base
string because parts depend on dynamic values that we cannot
determine statically. This can then result in an out-of-bounds
exception, which would cause us to miss more values. For
example, if a URL obtained dynamically would contain a 32
character device serial number, but our placeholder is from_-
pref, then the analysis may cause an out-of-bounds exception
if it accesses index 9. We mitigate this issue by preempting
the calls that can cause such issues and expand the value on
demand. Notably, this is not limited to string operations, but
also extends to accessing arbitrary member fields of objects. For



IoTFlow: Inferring IoT Device Behavior at Scale through Static Mobile Companion App Analysis CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

missing parameters or base objects, we attempt to create them
with their default constructors. For primitive data types (e.g.,
boolean, int, or float), we assign default values.

Local vs. Remote Endpoints ➎. A unique aspect of companion
apps is that their communication can be local, to connect to IoT
devices or hubs, or remote, to connect to remote backends. We
need to distinguish these classes to answer what data they share,
how, with whom, and what the security and privacy impact is.
Therefore, we categorize endpoints as certainly local or possibly
remote. That is, we identify local connections by checking whether
a reconstructed endpoint points to a local IP address, a broadcast
address, a multicast address, or the domain originates from user
input (fromUI.local). We consider all other endpoints as remote.

3.2 Data-Flow Analysis

In the second phase of IoTFlow, we use DFA to trace data flows
from IoT devices and sensitive Android methods. IoTFlow builds
on FlowDroid [12], which is a data-flow framework for Android. We
extended it to address the unique challenges of the IoT ecosystem.
We (1) connect reconstructed endpoint information to data sent or
received, similar to pointer analysis, and (2) trace flows across ICC.

Considering how modern apps work internally, we must pay
particular attention to ICC. It is now the recommended way for app
components to communicate with each other and often used, which
is why tracing data flow across it is crucial. Theoretically, FlowDroid
supports ICC via ICCTA [56]. However, ICCTA cannot generate ICC
models for current Android apps [66, 98], which prevents FlowDroid
from tracing flows through ICC. IoTFlow addresses this blind spot
by treating ICC as sources and sinks, and connecting an ICC sink
(writing to a key) to the corresponding ICC sources (reading from
the key) by reconstructing the key used in ICC through VSA.

Connecting Reconstructions➏. After reconstructing network end-
point information with VSA, we must connect them to the points
where the app adds data to the request objects or receives a response,
as these might be different fromwhere the endpoint is set. For exam-
ple the endpoint might be set during initialization of a connection
object that is later used (repeatedly) to send or receive data. We
identify the points where the app receives data and use the receiving
statement as communication trigger points. Similarly, we need to
connect a request’s destination with the request’s data when the
request is executed.We do so using multiple data-flow analysis runs,
whichwe split bymethod type for easier parallelization (e.g., MQTT,
UDP, or CoAP). Returning to Listing 2, we previously reconstructed
the MQTT broker endpoint via VSA (line 15). For our DFA in the
next step, we now associate the MQTT broker endpoint (line 15) to
the sink publishString (line 18) (marked ).

Direct Data Flows (Source to Sink) ➐. We are interested in data
flows from sources that are (1) Bluetooth, (2) responses from the
local network, or (3) sensitive Android methods. We trace them to
(1) ICC sinks and (2) remote sinks, that is, data leaks.1 Bluetooth
data is interesting as it may contain data from smart devices and
local network communication is likely data from smart devices.

Crucially, we need to treat flows to and from the same method
differently depending on the context and how the app uses the

1Full list of sources and sinks: https://github.com/SecPriv/iotflow/tree/main/config

method (e.g., we want to analyze local network responses but ignore
responses from remote endpoints). Thus, we extended FlowDroid to
support context-sensitive flow analysis. We precisely identified the
methods and the context that we need to consider as trigger points
with the help of our VSA and by Connecting Reconstructions ➏,
which we can utilize to understand potential data leaks.

We focus first on three types of straight-forward immediate
flows: (1) Bluetooth to network, (2) local network to network, and
(3) sensitive data to network. Additionally, we trace sources to ICC
sinks, to analyze flows across ICC, giving us three more flow types:
(4) Bluetooth to ICC, (5) local network to ICC, and (6) sensitive data
to ICC. Considering our example Listing 1, here, IoTFlow identifies
the flow (marked ) from the Bluetooth source bcg in line 3 via
line 5 to line 6, where the data value is passed to the intent using
the key BLE_DATA (reconstructed via VSA, marked ).

Indirect Data Flows (Source to ICC to Sink) ➑. Finally, we need
to follow up on the flows we identified that have an ICC sink, to
properly bridge the ICC boundary. We trace the additional flow
type (7) ICC source to network sink, and then precisely connect the
new flows with previously identified flows of types (4)–(6). This
allows us to discover and analyze data leaks involving ICC. For our
examples Listing 1 and Listing 2, based on Direct Data Flows ➐, we
identified a flow from Bluetooth to ICC using the key BLE_DATA. In
Listing 2, using our indirect flow analysis, we now identify the flow
(marked ) from the ICC source getStringExtra() in line 7 to
line 9 to line 17 to line 18, where the app sends the Bluetooth data
to the MQTT broker. Last, we connect the new ICC to network flow
to the previously identified Bluetooth to ICC flow leveraging the
VSA reconstructed ICC keys, giving us the indirect data flow that
crosses the ICC boundary from Bluetooth to ICC to network.

4 INSIGHTS INTO THE IOT ECOSYSTEM

We evaluate IoTFlow on 10,836 apps on an Ubuntu 20.04.6 machine
with 48 physical CPU cores (96 cores with hyper-threading, 2x
Intel(R) Xeon(R) Gold 6342 CPU) and 1,024 GiB RAM. We limit the
memory for the analysis of each app to 150 GiB (-Xmx150g).

4.1 Dataset

Verified Companion Apps. We analyze IoTFlow on 9,889 unique
IoT companion apps that were verified manually by prior work
as part of three individual datasets [50, 62, 63]. We refer to our
consolidated dataset as IoT-VER. It contains 455 apps collected by
Neupane et al. [63] for studying if apps follow best practices, 5,100
apps that Jin et al. [50] used for the training, validation, and testing
of IoTSpotter, and 6,208 apps that Nan et al. [62] collected and
manually verified for IoTProfiler. Three quarters of the IoTProfiler
apps are from the Google Play Store (74.6%), the remaining apps are
from third-party stores. We did not augment these datasets with
additional apps to not fragment the IoT companion app dataset
space, which we deem important for reproducibility. Unfortunately,
the public IoTSpotter dataset is incomplete and it misses 128 apps.
Neupane et al.’s dataset misses two apps for which only the package
name is available. We excluded these apps from our dataset.

All three datasets have 118 apps in common. IoTSpotter and
IoTProfiler share 1,430 apps. The dataset of Neupane et al. shares
57 apps with IoTSpotter and 21 apps with IoTProfiler. If multiple

https://github.com/SecPriv/iotflow/tree/main/config


CCS ’23, November 26–30, 2023, Copenhagen, Denmark. David Schmidt, Carlotta Tagliaro, Kevin Borgolte, and Martina Lindorfer

datasets contain the same app, we only analyze the most recent
version, that is, the app with the highest version code, since it is
monotonically increasing [7]. Our consolidated dataset IoT-VER
contains 9,889 apps, unique by their package names.

Popular General-purpose Apps. We also downloaded 1,000 popu-
lar apps and games from the top selling free category of the Google
Play Store in January 2022, which we use to illustrate the differences
between IoT companion apps and other apps.Wemanually removed
companion apps from the dataset and refer to the remaining 947
apps as GP-2022. To do so, two researchers independently classified
each app based on its metadata in the Google Play Store. If they
disagreed, they studied it in-depth until they reached an agreement.

4.2 Performance

We first discuss the performance of IoTFlow on our datasets (see
Table 1). In addition to the total run time, we investigate the required
time separately for VSA and DFA. On average, general apps take
almost five times as long to analyze as companion apps (125m31s
vs. 26m23s). This difference is even more pronounced when con-
sidering the median (129m36s vs. 6m51s): The processing time for
companion apps is almost 20x faster than for general apps. Reasons
may be the larger code base of general-purpose apps or that they
tend to have more sources and sinks that we need to consider.
Overall, we consider a median analysis time of less than 7 minutes
and an average analysis time of approximately 26 minutes practical.

VSA Performance. We allow up to 600 backward traces for each
identified statement to prevent long-running analyses. Increasing
the number of backward traces typically leads to more combina-
tions of the same data, like request parameters. Each backward
trace has up to 300 steps. We determined these thresholds em-
pirically, observing a reasonable trade-off between resources and
precision. Additionally, we configure timeouts for backward tracing
(15 minutes) and forward computation (20 minutes). Our analysis
only triggered the backward timeout when analyzing 11 (0.1%, all
from GP-2022) apps and the forward timeout for 304 (2.81%; 155,
1.57% IoT-VER and 149, 15.73% GP-2022) apps, which we consider
reasonable. Higher thresholds could lead to more flows being found.

Data-Flow Performance. For DFA, we increased the timeout sug-
gestions by the FlowDroid authors [14] by 50%. We set the Flow-
Droid callback collection timeout to 7m30s and the timeout for
flow analysis to 15m. Our analysis triggered the callback timeout
for 2,432 apps (22.44%) and the flow analysis timeout for 3,004
apps (27.72%). Separating the two datasets, 1,847 companion apps
(18.68%) and 585 general-purpose apps (61.77%) triggered the call-
back timeout, while 2,484 companion apps (25.12%) and 520 general-
purpose apps (54.91%) triggered the flow analysis timeout.

4.3 How Companion Apps Communicate

To answer RQ1: How do companion apps and devices communicate?,
we identify device-to-app communication and the involved network
protocols, and we study certificate pinning.

4.3.1 Direct Device Communication. First, we analyze the recon-
structed values for indicators of direct communication with the de-
vices, such as local IP addresses, broadcast, and multicast addresses,
user-configurable addresses (i.e., endpoints from user input; marked

Table 1: Dataset and Performance Overview. We show for the

VSA, Flow Analysis, and the total time (VSA+Flow Analysis),

the average time (Avg.), median time (Med.), and standard

deviation (Std.) per app in minutes [minutes:seconds].

VSA Flow Analysis Total

Dataset # Apps Med. Avg. Std. Med. Avg. Std. Med. Avg. Std.

IoT-VER 9,889 1:52 5:40 9:46 3:59 21:19 31:29 6:51 26:23 37:20
GP-2022 947 75:53 70:44 36:40 55:57 54:47 40:29 129:36 125:31 65:56

Table 2: Number of Apps using Direct Device Communica-

tion. Indicators are hard-coded local network IP addresses

(grouped if found in 30 or more apps), user-configurable ad-

dresses (fromUI.local), broadcast andmulticast, or Bluetooth.

Address IoT-VER GP-2022

10.*.*.* 716 (7.24%) 12 (1.27%)
10.0.0.172 516 (5.22%) 1 (0.11%)
10.0.0.200 438 (4.43%)
10.10.2.2 48 (0.49%) 7 (0.74%)
other 242 (2.45%) 12 (1.27%)

172.16-31.* 103 (1.04%) 4 (0.42%)
172.17.0.1 49 (0.50%) 1 (0.11%)
other 56 (0.57%) 3 (0.32%)

192.168.*.* 746 (7.54%) 4 (0.42%)
192.168.0.1 115 (1.16%)
192.168.1.1 180 (1.82%) 2 (0.21%)
192.168.1.3 36 (0.36%)
192.168.4.1 77 (0.78%)
other 518 (5.24%) 2 (0.21%)

fe80 3 (0.03%)
Multicast and Broadcast 452 (4.57%) 4 (0.42%)

224.0.0.251 127 (1.28%) 1 (0.11%)
239.255.255.250 74 (0.75%)
255.255.255.255 241 (2.44%) 4 (0.42%)
IPv4 other 93 (0.94%)
IPv6 other 3 (0.03%)

fromUI.local 123 (1.24%) 1 (0.11%)
Bluetooth 6,355 (64.26%) 180 (19.01%)

as fromUI.local), and Bluetooth permissions. The latter indicates
that the devices themselves might not have Wi-Fi capabilities,
but that they use the companion app as a gateway to access the
Internet. Some devices may also spawn their own Wi-Fi network
that the phone needs to join for pairing. Within the network, the
device has a fixed address known by the companion app. The apps
can also use broadcasts to discover devices in local networks, for
example apps use Universal Plug and Play (UPnP) to find devices
that support screen mirroring. A fourth method is asking the user
directly. Table 2 summarizes our findings.

IoT-Verified. 6,355 (64.26%) apps declare at least one Bluetooth
permission. We find a local IP address in 1,483 (14.99%) apps, a
broadcast or multicast addresses in 452 (4.57%) apps, and addresses
from user input in 123 (1.24%) apps. Among broadcast and multicast
addresses, we found the broadcast address 255.255.255.255 (2.44%)
most often, followed by the multicast DNS (mDNS) 224.0.0.251
(1.28%), and UPnP’s 239.255.255.250 (0.75%). Besides the IPv4 ad-
dresses, we found three (0.03%) IPv6 multicast addresses.

General-purpose Apps. We observe a significant lower number for
all four direct device communication indicators for general-purpose
apps in GP-2022. We find local IP addresses in only 2.21% of apps,
compared to 14.99% in IoT-VER. Similarly, broadcast and multicast
addresses drop from 4.57% in IoT-VER to 0.42% in GP-2022. Only



IoTFlow: Inferring IoT Device Behavior at Scale through Static Mobile Companion App Analysis CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

one (0.11%) address depends on user input in GP-2022, compared to
123 (1.24%) addresses in IoT-VER. The number of apps requesting
Bluetooth permissions also decreased from 64.26% in IoT-VER to
19.01% in GP-2022. These findings strengthen our assumption that
our direct device communication indicators are indeed meaningful.

Takeaways. We identified four strategies apps use to communi-
cate locally with smart devices, and we show by comparing them
to general-purpose apps that they are indeed specific to companion
apps. Identifying this kind of communication helps security and
privacy analyses (see Section 4.5.2). Prompting the user for the
device location and using multicast can be dangerous and prone to
misconfigurations. Usersmightmake devices unwittingly accessible
over the Internet [18]. A Shodan [84] query for open port 554 returns
78,858 results of exposed cameras, suggesting that misconfigured
devices accessible remotely are a common issue. Attackers can also
sniff broadcast packages or mimic the legitimate device to act as
a Monkey-in-the-Middle (MITM) [29]. Finally, we note that any
information about local network devices is sensitive and can be
abused for advertising and tracking purposes [52].

We recommend to use device discovery and avoid requiring user
configurable addresses, to reduce the risk of accidental misconfigu-
rations [30]. Apps should also respect users’ privacy and not send
local network information to remote servers. In fact, they should
prefer local communication over cloud communication whenever
possible, as remote requests can reveal usage patterns to others.

4.3.2 URL Protocol Schemes. We identify network protocols based
on the values we reconstructed through VSA. First, we analyze the
URL schemes of the endpoints that apps communicate. Second, as
we reconstruct endpoint information for libraries for AMQP,MQTT
and XMPP communication, we can draw conclusions about them,
even if they do not use specific schemes. Table 3 summarizes our
results. The row IoT-related summarizes the schemes and protocols
that are tailored to IoT devices. We group IPP, IPPs, RMTP, and
VNC as IoT-other as we found them only in one or two apps, and
we group protocols from IANA’s list of URI schemes [48] that are
less interesting for our use case (e.g., service, about, info) as Other.
Overall, for IoT-VER, we reconstructed schemes in 7,113 unique
apps for remote endpoints and in 871 apps for local communication.

HTTP(S). We find that apps still widely use plain HTTP. Our
numbers represent an upper bound as we do not know how many
actual connections occur over HTTP since we base our results
on statically reconstructed endpoints. In practice, HTTP might be
upgraded by default, but even if used as a fallback, HTTP can lead
to security and privacy issues through protocol downgrade attacks.

Our results show that a high proportion of HTTP traffic, com-
pared to HTTPS traffic, is for local communication. This is not
surprising: Local communication might appear safe, and deploying
TLS properly for IoT devices remains challenging [72]. Nevertheless,
even if communication is local, TLS protects against eavesdroppers,
which is important as devices use broadcast media like Wi-Fi.

MQTT Endpoints. Smart devices have unique usage scenarios and
requirements, such as device-to-device communication and energy
efficiency. Traditional communication protocols do not satisfy these
requirements. New protocols can fit these demands, but they can
also threaten security and privacy, especially if they were designed

Table 3: Number of Apps with Reconstructed URL Protocol

Schemes. Percentages are relative to the numbers of total

apps with at least one scheme. For IoT-VER, we identified

schemes for 871 local endpoints and 7,113 remote endpoints.

ForGP-2022, we identified schemes for 14 local endpoints and

898 remote endpoints. Protocols marked with a star (*) are

based on IoTFlow identifying the corresponding libraries.

Local Possibly Remote

Protocol IoT-VER GP-2022 IoT-VER GP-2022

Android 29 (0.41%) 184 (20.49%)
File 4 (0.46%) 2,180 (30.65%) 578 (64.37%)
FTP 1 (0.11%) 8 (0.11%)
HTTP 788 (90.47%) 13 (92.86%) 4,901 (68.90%) 639 (71.16%)
HTTPS 81 (9.30%) 2 (14.29%) 5,445 (76.55%) 885 (98.55%)
IoT-related 49 (5.63%) 315 (4.43%) 1 (0.11%)

AMQP* 6 (0.08%)
Cast 4 (0.06%)
CoAP* 2 (0.23%) 9 (0.13%)
CoAPs* 2 (0.03%)
MQTT* 27 (3.10%) 158 (2.22%) 1 (0.11%)
Palm 58 (0.82%)
RTSP 1 (0.11%) 15 (0.21%)
RTSPs 2 (0.03%)
TV 9 (0.13%)
URN 8 (0.92%) 18 (0.25%)
XMPP* 11 (1.26%) 29 (0.41%) 1 (0.11%)
IoT-other 4 (0.06%)

JAR 65 (0.91%) 1 (0.11%)
SMB 4 (0.46%) 62 (0.87%) 2 (0.22%)
WS 14 (1.61%) 7 (50.00%) 130 (1.83%) 10 (1.11%)
WSS 2 (0.23%) 138 (1.94%) 14 (1.56%)
Other 7 (0.80%) 1,604 (22.55%) 830 (92.43%)

without considering an adversarial environment or if developers
make wrong assumptions about them. One protocol used often
by IoT devices is the Message Queuing Telemetry Transport (MQTT)
protocol. In practice, it often lacks authentication and authorization,
allowing attackers to access user data or take over devices [49, 97].

MQTT is the most widespread IoT-specific communication pro-
tocol for IoT-VER. We reconstructed 147 MQTT endpoints in 176
apps, of which nine represent local IP addresses. We verify that
the remaining 138 remote endpoints are indeed valid by opening
a connection to them. To not raise any ethics concerns, we only
open and immediately close the connection, and we do not perform
any action (e.g., subscribing to a topic). We use the Python Paho
library [31] for our test and base our results on the return code:
If the connection is successfully established (return code 0) or an
error related to connection parameters is returned (return codes 1
to 5), we consider the endpoint as reachable and valid.

We connected successfully (return code 0) to 74MQTT endpoints
(53.62%). To further investigate the remaining 64 endpoints, we
probed for other ports typically used for MQTT (1883 and 8883)
with nmap [59]. Seven endpoints were closed and 37 were filtered,
meaning our connection attempts were prevented at the network
level. One reason may be geographical restrictions. The remaining
20 endpoints were unresponsive to ICMP echo requests and we
consider them unreachable.

MQTT Credentials. IoTFlow can also reconstruct authentication
credentials. Hard-coding credentials into the app can lead to attacks
on the integrity and confidentiality of data by allowing an attacker
to connect and publish or subscribe to topics (e.g., modifying a
parameter of a physical actuator). We reconstructed 30 unique
usernames and 34 unique passwords in IoT companion apps.



CCS ’23, November 26–30, 2023, Copenhagen, Denmark. David Schmidt, Carlotta Tagliaro, Kevin Borgolte, and Martina Lindorfer

MQTT Topics and Payloads. Our analysis can reconstruct the
topics (i.e., topics for which the phone or IoT device should receive
messages) andmessage payload formats (i.e., the format of messages
shared between phone, IoT device, and the cloud). We found 726
topic names and 330 payload formats. While we may miss dynamic
values from communication with the device, the information we
gain is valuable to understand the behavior of IoT apps and devices.

Other IoT Protocols. We also identified other IoT protocols in IoT-
VER apps, namely XMPP, AMQP, and CoAP. Among the 36 XMPP
endpoints we identified, we could connect to five, the port was
filtered for six, and the remaining 25 endpoints were unresponsive
to ICMP echo requests. For the six identified AMQP endpoints, we
could connect to two, we received an authentication error for one,
and the AMQP-specific port was closed or filtered for the remaining
endpoints. For the two CoAP endpoints, one was a local IP address,
but we successfully reconstructed 55 unique URL paths used to
specify the location of resources on the server.

General-purpose Apps. For GP-2022, we reconstructed local ad-
dresses only in combination with HTTP, HTTPS, and WS (Web-
Socket). Like for companion apps, only a minority uses HTTPS
locally (14.29%). However, unlike IoT apps, nearly all apps (98.55%)
use it for remote communication. Unsurprisingly, general apps do
not use IoT protocols. Only a card game app uses MQTT and XMPP.

Takeaways. We found widespread adoption of HTTP across IoT-
VER apps despite its insecurity. For GP-2022 apps, the situation
improves as almost all apps communicate over HTTPS. However,
in both datasets, most local communication does not adopt TLS to
secure the connection. We also identified how IoT-specific protocols
(MQTT, AMQP, XMPP, CoAP) are being used and we reconstructed
crucial information, like credentials and topics.

Generally, apps should not use hard-coded credentials but gener-
ate them individually during initialization, use limited and narrow
authorization scopes, follow best practices (e.g., encrypting Android
shared preferences [8]), and encrypt all communication (e.g., via
TLS, but preferably end-to-end).

4.3.3 Pinning and Certificates. An additional aspect of how com-
panion apps secure their communication is certificate pinning. It is
a contentious topic: While OWASP [92] suggests it when the app
wants to verify the host’s identity, Google [3] advises not to adopt
it because of issues deriving from certificate changes. However,
determining whether it is good or bad is out of scope of our work.

We use the approach by Pradeep et al. [76] to identify pinning and
the corresponding certificates by analyzing the Network Security
Configuration (NSC) specified in the Android Manifest and the
certificates included in the app. Table 4 summarizes our results.

IoT-Verified. More companion apps include certificates (12.21%)
than use pinning (3.89%). On average, each app includes 3.21 certifi-
cates. More than half of the certificates in IoT-VERwere self-signed,
possibly to communicate with IoT devices. We also investigate if
certificates were expired when the apps were downloaded. If the
download date is unknown, we infer it based on the app versions.
Our numbers are lower bounds for the apps from IoTProfiler and
Neupane et al. because we assume apps were downloaded on the
first day of the year when they could have been downloaded. We
treat certificates as expired if their expiration date is before 2018

Table 4: Certificates and Pinning. The first rows show the

number of apps in which we found pinning, certificates,

and apps containing expired or self-signed certificates. The

remaining rows show the corresponding certificates. The

number of expired certificates at the time of download is a

lower-bound for IoT-VER because it is not always known.

IoT-VER GP-2022

Apps Pinning 385 (3.89%) 111 (11.72%)
Certificates 1,207 (12.21%) 119 (12.57%)
Expired (at download) 474 (4.79%) 49 (5.17%)
Expired (May 2023) 822 (8.31%) 59 (6.23%)
Self-Signed 1,042 (10.54%) 91 (9.61%)

Certificates Total Number 31,285 1,837
Expired (at download) 3,976 (12.71%) 268 (14.59%)
Expired (May 2023) 9,129 (29.18%) 321 (17.47%)
Self-Signed 18,018 (57.59%) 684 (37.23%)

Avg per App (Std) 3.21 (20.97) 1.94 (14.59)

for IoTProfiler and before 2021 for apps by Neupane et al. Apps
might be downloaded later, but this does not threaten validity as our
numbers are a lower bound. For IoTSpotter apps, the download date
is available as they were downloaded via AndroZoo [2]. Overall,
12.71% certificates were expired when the apps were downloaded
(in 4.79% apps). In May 2023, 822 (8.31%) apps contain 9,129 (29.18%)
expired certificates. Intuitively, expired certificates point to poor
security practices and can even prevent communication.

General-purpose Apps. Compared to IoT-VER, more apps adopt
pinning (11.72% vs. 3.89%), but the same proportion of apps include
certificates (12.57% vs. 12.21%). On average, however, they include
less certificates (1.94 vs. 3.21). One reason may be the lower number
of self-signed certificates. While more than half of all (57.59%)
certificates are self-signed for companion apps, only slightly more
than one third (37.23%) of certificates are self-signed for general-
purpose apps. At the download date, 14.59% certificateswere already
expired. IoT-VER’s older download date could be a reason for the
increase in expired certificates in May 2023 (29.18% vs. 17.47%).

Takeaways. Comparing included, expired, and self-signed certifi-
cates, we can conclude that more certificates do not lead to better
security. Companion apps include substantially more certificates
than general-purpose apps, and proportionally significantly more
of them are expired or self-signed. Interestingly, fewer companion
apps adopt the controversial practice of certificate pinning.

Generally, developers should renew certificates well before expi-
ration, as users may not install updates immediately. Further care
is needed for self-signed certificates as apps must add code to ex-
plicitly trust them, or Android will prevent the communication that
attempts to use them. Worse, doing so incorrectly, like instructing
TrustManager to trust every certificate, enables MITM attacks [3].

4.4 With Whom IoT Apps Communicate

After analyzing how apps communicate, we investigate RQ2: Who
are companion apps communicating with? We categorize the re-
constructed fully-qualified domain names (FQDNs) and effective
top-level domains+1 (eTLD+1) to spot potentially problematic end-
points, like trackers, investigate where data is sent geographically,
and analyze if endpoints are vulnerable to domain takeovers.



IoTFlow: Inferring IoT Device Behavior at Scale through Static Mobile Companion App Analysis CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

Table 5: Categorized Endpoints by IoTFlow for IoT-VER, GP-2022, and Comparison between IoTFlow (IF) and Dynamic Analysis

(DA).We report with the number of unique FQDN per dataset and shared between them, prefixed with # the number of apps

with at least one domain per category, the average number of domains per app, and the standard deviation.

Large-scale IoTFlow Analysis IoTFlow vs. Dynamic Analysis

IoT-VER GP-2022 Shared # IoT-VER # GP-2022 Avg (SD) IoT Avg (SD) GP IF DA ∩ ∩ TLDs # Apps

Advertisement 487 279 141 2,959 (29.92%) 848 (89.55%) 0.76 (1.73) 6.33 (4.92) 34 56 10 (12.50%) 9 (39.03%) 13 (100%)
Analytics 114 96 78 1,647 (16.65%) 679 (71.70%) 0.38 (1.03) 2.89 (3.68) 12 16 6 (27.27%) 5 (45.45%) 9 (69.23%)
CDNs 410 97 26 1,165 (11.78%) 733 (77.40%) 0.17 (0.64) 1.02 (0.97) 9 16 - (-) - (-) 9 (69.23%)
Crash Reporting 4 3 3 195 (1.97%) 192 (20.27%) 0.02 (0.15) 0.23 (0.49) 6 1 1 (16.67%) 1 (50.0%) 3 (23.08%)
Social Networks 84 49 24 1,046 (10.58%) 137 (14.47%) 0.37 (1.45) 0.23 (0.79) 11 6 1 (6.25%) 1 (14.29%) 2 (15.38%)
Other 7,248 1,420 271 4,917 (49.72%) 685 (72.33%) 2.08 (4.57) 3.52 (5.29) 80 84 17 (11.56%) 19 (25.33%) 12 (92.31%)

4.4.1 Advertisers and Trackers. We classify the FQDNs to learn
who receives data from the app and, via the app, from the devices.
We use the domain lists by Ren et al. [82], which they compiled
from various ad-blocking lists. Additionally, we use the Exodus
tracker list [36]. Table 5 summarizes our results.

IoT-Verified. Overall, 2,959 (29.92%) apps include 487 unique
advertisement FQDNs and 1,647 (16.65%) apps use 114 analytic-
related FQDNs. Although they belong to different categories, both
domains behave similarly by collecting user information. We also
reconstructed 410 FQDNs pointing to Content Distribution Net-
works (CDNs) in 1,165 (11.78%) apps. Additionally, we identified 84
social network FQDNs shared across 1,046 (10.58%) apps, with the
respective standard deviation indicating that if apps use one, they
often use more. The remaining 7,248 FQDNs in 4,917 (49.72%) apps
do not fall in our categories and we label them Other.

General-purpose Apps. The average number of advertisement
and tracker FQDNs per general-purpose app is 6.33, eight times
higher than per companion app (0.76). Additionally, they occur in
almost all apps (89.55%), while they only occur in less than one
third (29.92%) of companion apps. The situation for analytics FQDNs
is similar (71.70% vs. 16.65%). Most analytics and crash reporting
FQDNs are shared between the two datasets, while FQDNs from
other categories are mainly limited to one dataset.

Takeaways. The large number of 7,248 Other FQDNs in compan-
ion apps combined with the low number of 271 FQDNs shared with
general-purpose apps (3.25% of all IoT FQDNs) suggests that many
are IoT-specific. Prior work observed a low coverage of existing
filter lists for IoT domains [60, 88], highlighting the need for more
scrutiny by future work into who receives data by these apps. Prior
work showed that users value IoT security and privacy [32] and
are willing to pay a premium for devices that respect their security
and privacy [33]. Indeed, not using ad services or trackers could be
a unique and convincing differentiating value proposition for IoT
devices, especially because users already pay for the device.

4.4.2 Geographic Location. Next, we determined the location of
the reconstructed FQDNs to study where data is sent and which
countries receive IoT data. We first resolved the FQDNs to de-
termine the location of the IPv4 addresses against the allocated
blocks [34]. We resolved them from Vienna, Austria, which is in a
jurisdiction that has implemented the EU’s General Data Protection
Regulation (GDPR) [35]. Notably, due to geographic split horizon
DNS (GeoDNS), the resolved IP addresses may differ for other
vantage points. Table 6 shows aggregated geographic regions. We

Table 6: Geographic Location of Network Endpoints. The

numbers show the amount of endpoints from each location

and the ratio to the overall number of endpoints.

US CN EU Asia UK RU Other

IoT-VER 17,283
(46.09%)

10,221
(27.25%)

5,380
(14.35%)

3,166
(8.44%)

438
(1.17%)

113
(0.30%)

901
(2.40%)

GP-2022 10,606
(79.69%)

181
(1.36%)

1,786
(13.42%)

207
(1.56%)

47
(0.35%)

299
(2.25%)

183
(1.38%)

perform our analysis at the FQDN level because the FQDN endpoint
receives the data. This granularity is also important because FQDN
and eTLD+1 locations can differ. For example, xiaomi.com is hosted
in China, but ru.register.xmpush.xiaomi.com is hosted in Russia.

We can make multiple observations comparing endpoint loca-
tions between companion apps and general-purpose apps. First, sub-
stantially fewer endpoints for companion apps are in the US (46.09%)
than they are for general-purpose apps (79.69%). The difference (33.6
percentage points) stems almost exclusively from more Chinese
endpoints (27.25% to 1.36%, 25.89 pp), with the remainder (7.71 pp)
being nearly covered by other Asian countries for IoT-VER (8.44%
compared to 1.56%, 6.88 pp). Other regions remain mainly stable.

Takeaways. The scattered geographic location of endpointsmight
raise privacy concerns. Countries have implemented various data
protection regulations with stricter or more relaxed requirements.
For example, the EU’s GDPR [35] is considered theworld’s strongest
privacy law. If a European user downloads an app that contacts
endpoints outside the EU, their data is subject to GDPR, but the
app may transfer it to foreign countries and process it there. This
clearly raises privacy concerns and may even be illegal. Moreover,
even if no sensitive data is sent directly, metadata can suffice to
infer usage patterns, which can be sensitive (e.g., for smart locks).

4.4.3 Abandoned Domains. Domains that could be re-registered
but are still used pose severe security and privacy risks for users
as attackers could take them over. A similar argument applies
to domains that are registered, but for which DNS information
is stale and where the corresponding IP address could be taken
over [17]. We focus on expired domains as they provide longer-
term capabilities to attackers. We extract the eTLD+1 from the
reconstructed FQDNs to identify abandoned domains. We then
resolve the eTLD+1 to test whether they are in use. For domains
we cannot resolve, we use WHOIS to check if it is registered or free.

IoT-Verified. We identified 136 potentially abandoned domains
in companion apps. After manually investigating and removing
artifacts, we verified that 67 domains from 73 apps are indeed

xiaomi.com
ru.register.xmpush.xiaomi.com


CCS ’23, November 26–30, 2023, Copenhagen, Denmark. David Schmidt, Carlotta Tagliaro, Kevin Borgolte, and Martina Lindorfer

available for registration. They are in apps for watches, TVs, cars,
health equipment, security and baby cameras, lights, and locks. An
attacker could take over these devices by registering the domains.

We also investigated if the 73 apps can still be downloaded
from the Google Play Store. Unavailable apps remain critical, but
differently so. They can still impact users as the devices might not
have been replaced and they might still connect to those domains.
We found that 27 apps (37.0%) are available. Remarkably, one app
has over one million downloads, a second app has over 500,000, and
three others have more than 100,000. For ten apps, based on the
reconstruction information, it is likely the domains receive IoT data.
They use IoT information in URLs, such as ipcDeviceIdList as a
request parameter, or petinfoDatas/addpet as a path. Eight apps
use abandoned domains to download files, which may be executed
or could be device updates. Sixteen domains are API endpoints
and also likely receive sensitive data. We responsibly disclosed our
findings to developers and the Google Play Store.

Takeaways. Pariwono et al. [73] investigated abandoned domains
for general apps, but the dangers can be more serious for IoT
devices. Attackers could not only take over the apps and receive
PII, but they might also be able to control hundreds of thousands of
devices, enabling large-scale distributed denial-of-service attacks
and allowing them to create botnets. Our analysis shows (1) that
abandoned domains are a real danger in the IoT ecosystem, (2) that
they affect a varied range of devices, and (3) what data they receive.

Developers should actively monitor the domains that their apps
may contact, including those of third-party libraries. Additionally,
old or deprecated domains that may still be contacted should remain
registered, as users may depend on outdated app versions, andmade
inoperable instead of allowing others to register it.

4.5 What Data Companion Apps Share

To answer RQ3: Which data are companion apps sharing (and how)?,
we first report what data apps can access, based on the requested
permissions, to understand what data they could share. We then
analyze the data flows we extracted to identify leaked data and
whether encryption is used to protect data.

4.5.1 Permissions. Weextract permissions and protectionLevelwith
Androguard [28]. We focus on permissions with a protectionLevel
of dangerous (permissions protecting sensitive resources) and privi-
leged (permissions that third-party apps should not adopt).

On average, GP-2022 apps request more permissions than com-
panion apps (17.54, SD 14.10 vs. 14.26, SD 10.23). For IoT-VER, 8,769
(88.67%) apps request at least one dangerous permission. WRITE_-
EXTERNAL_STORAGE occurs most often (7,209 IoT apps, 72.9% and
559 general-purpose apps, 59.03%). The second and third most fre-
quent permissions are ACCESS_COARSE_LOCATION (5,735 IoT apps,
57.99%) and ACCESS_FINE_LOCATION (5,529 IoT apps, 55.91%) as
in most cases IoT devices also rely on location to perform their
functions (e.g., smart watches recording physical activity).

Additionally, 2,604 (26.33%) IoT apps request one or more priv-
ileged permissions, while only 73 (7.71%) GP-2022 apps do. Even
if system permissions are requested, they will only be granted if
the phone is rooted or if the app has a special entitlement (e.g., the
phone vendor may grant such an entitlement to their own apps,
and they might also produce IoT devices). They can also occur for

backward compatibility reasons or be remnants from development
that were never removed (e.g., the second most common privileged
permission is READ_LOGS, which appears in 998 IoT apps).

Finally, 5,660 (57.24%) IoT apps use “non-standard” permissions.
The permission occurring the most belongs to Google Cloud Mes-
saging (GCM) (3,656 apps, 36.97%) and is used when receiving a
broadcast from GCM. We also find permissions of specific brands,
for example, Huawei (60 permissions occur 1,207 times in 424 apps)
or Sony (31 permissions 787 times in 424 apps).

Takeaways. General-purpose apps request more permissions
than companion apps on average. However, IoT apps use more priv-
ileged and dangerous permissions, with two of the most requested
dangerous permissions being for the user’s geographic location.

We recommend to regularly review if permissions are still cur-
rent, to request the least necessary set of permissions, and to only
temporarily acquire themwhen needed.With newAndroid updates,
permissions might also change, for example, scanning for Bluetooth
devices required location permissions only up to Android 12 [6, 42].

4.5.2 Data Flows. To learn more about what data is sent, we an-
alyze the flows we discovered via DFA. Table 7 summarize our
findings. We distinguish between three flow types based on the
destination: Bluetooth, local network, or a sensitive Android API.
We determine where the data is sent by connecting the VSA results
with the individual flows. Unfortunately, we may not have precise
information for all flows for two reasons: (1) VSA might not recon-
struct an endpoint precisely, for example, because it depends on
dynamic values, (2) we could not connect reconstruction and flow.

We identified data flows fromBluetooth and local network sources
only for IoT apps, which is not surprising, as we have shown that
such communications are companion app specific (see Section 4.3.1).
Overall, we found 579 flows from Bluetooth sources in 90 apps. Re-
markably, 497 (85.84%) of these flows involve ICC, which highlights
the need for DFA that is ICC aware, like our approach. We precisely
identified endpoint information (i.e., where the data is sent to) for
50 (8.64%) flows. For local network sources, we discovered 75 flows,
of which four (5.33%) involve ICC. IoTFlow reconstructed precise
endpoint information for 49 (65.33%) of them. Finally, we identified
6,706 flows from sensitive Android API in 1,682 (17.01%) IoT apps,
and 1,366 such flows in 318 (33.58%) GP-2022 apps.

Case Study: Smart Grill. Our analysis finds a flow in a compan-
ion app for smart grills. The app reads data from the device via
BLE, parses it, process it via an intent, and later sends it to an
Amazon AWS endpoint via MQTT. We successfully connected to
the endpoint without requiring credentials (anonymously) (see
Section 4.3.2). This means that we could potentially receive data
from others (for ethical reasons, we did not explore this further).

Case Study: Smart Camera. In a smart camera companion app, we
found a flow from getDeviceId to a remote endpoint. The app uses
the IMEI together with a username and password for authentication.
Worth mentioning is also that the app hashes the password using
MD5, which is insecure and cryptographically broken. Afterward,
the app encrypts the username and password with 3DES, which
is also insecure and cryptographically broken. IoTFlow’s VSA
reconstructed the key, even though the app developers put one byte



IoTFlow: Inferring IoT Device Behavior at Scale through Static Mobile Companion App Analysis CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

Table 7: Flow Analysis.We separated the flows by their categories. The ICC-Flow columns represent the flows involving any

ICC, and the endpoint columns the flows with additional endpoint information. The ratio concerns the number of flows from

the category. The app columns show the number of apps with the respective flows and the relation to the apps in the dataset.

Bluetooth Local Network Android

Dataset ICC-Flows Endpoints Flows Apps ICC-Flows Endpoints Flows Apps ICC-Flows Endpoints Flows Apps

IoT-VER 497 (85.84%) 50 (8.64%) 579 90 (0.91%) 4 (5.33%) 49 (65.33%) 75 53 (0.54%) 2,340 (34.89%) 1,952 (29.11%) 6,706 1,682 (17.01%)
GP-2022 420 (30.75%) 619 (45.31%) 1,366 318 (33.58%)

of the key into a different class file, potentially trying to obfuscate
it and avoid regex-based key recovery.

Sharing the IMEI is problematic because users can only change
the IMEI by physically replacing the device as it is a non-resettable
hardware identifier. Google strongly discourages developers from
using any hardware identifiers, including the IMEI [5], and it is
also prohibited by Android’s user data policy [40]. With Android 10
(API level 29, released in 2019), Google added additional restrictions
to access the IMEI [5, 9], but around 14.4% of users are still using
older versions, allowing apps to access these identifiers [15].

Geographic Location. We also analyze the geographic location
of data flows with endpoint information. For IoT-VER, we find
917 (15.04%) flows sending data to Chinese and 604 (9.90%) to US
endpoints. The share of flows with US endpoints increases for
general-purpose apps (75, 27.88%), while the share for Chinese
drops (12, 4.46%), aligned with their distribution (see Section 4.4.2).
Positively, as we conducted our experiments from the EU, most
destinations are within the EU: 73.80% for IoT-VER and 67.66% for
GP. Unfortunately, it also means that more than 25% of destinations
are outside the EU, potentially violating GDPR. The situation is
worse for Bluetooth-based sources than it is for local network flows.
For Bluetooth, 27 endpoints (45.76%) are US endpoints, and for local
network flows, 37 endpoints (52.86%) are Chinese endpoints. Our
artifact provides more details.2

Takeaways. With the help of IoTFlow’s combination of VSA
and DFA, we identified real-world security and privacy issues in the
IoT ecosystem and we discussed what data companion apps leak
and where they send it, which we illustrated with two examples.

Following best practices and for privacy reasons, developers
should minimize data they collect and use, and only send data if it
is truly necessary. Generally, we recommend to process as much
data as possible locally, and to encrypt any data leaving the devices.

4.5.3 Encryption Analysis. Finally, we analyze the encryption algo-
rithms apps use and we investigate the reconstructed data passed
to cryptographic methods. We reconstructed the algorithms in 812
(85.74%) GP-2022 apps and in 4,069 (41.15%) IoT-VER apps. Table 8
summarizes our results. AES is the most widely used encryption
algorithm for IoT apps (92.97%) and GP-2022 apps (99.38%). Algo-
rithms that are considered insecure or cryptographically broken
are much more prominent in IoT apps (1,461 apps, 35.80%) using
encryption than they are in GP-2022 apps (135, 16.63%).

We also evaluate reconstructed encryption keys. Unfortunately,
removing false positive artifacts is extremely challenging because
it is difficult to determine whether a key is truly used as is. For
example, a 16-byte array with all 0 values could be an insecure

2https://github.com/SecPriv/iotflow/tree/main/scripts/evaluation/dfa

Table 8: Encryption Algorithms. The number of apps that use

the respective encryption algorithm and its relation to the

number of apps with encryption algorithms (4,069 IoT-VER,

and 812 in GP-2022). Recommended algorithms are marked

µ. Algorithms considered insecure or broken are marked ○.

Algorithm IoT-VER GP-2022

µ AES 3,794 (92.97%) 807 (99.38%)
µ ChaCha 4 (0.10%) 3 (0.37%)
µ Diffie-Hellman 14 (0.34%) 44 (5.42%)
µ RSA 16 (0.39%)

Serpent 136 (3.33%) 31 (3.82%)

○ Blowfish 79 (1.94%) 10 (1.23%)
○ DES 1,366 (33.47%) 120 (14.78%)
○ 3DES 351 (8.60%) 66 (8.13%)
○ GOST 5 (0.62%)
○ RC4 288 (7.06%) 21 (2.59%)

key, or it may not have been initialized. Therefore our numbers
are an upper bound. Overall, we reconstructed hard-coded keys in
2,321 (57.04%) IoT apps and 408 (50.24%) general-purpose apps.

Takeaways. The main differences between IoT apps and GP-2022
apps are in what encryption they use and how they use them.
Using hard-coded keys and broken encryption algorithms gives
a false sense of security and does not provide security or privacy.
Unfortunately, both issues are worse for companion apps.

Beyond using strong encryption algorithms, we also recommend
to initialize encryption keys on demand and to store them securely,
for example, with the help of Android KeyStore [4].

5 IOTFLOW VS. DYNAMIC ANALYSIS

Our static analysis approach has some limitations, especially be-
cause we do not require access to the device. It is crucial to under-
stand what and how much information we can truly reconstruct
from companion apps without the device. We verify the accuracy
and completeness of the reconstructed values by analyzing and
comparing the results we obtained through IoTFlow with our in-
depth manual analysis when interacting with apps and devices. To
this end, we recorded traffic when using 13 different devices and
their companion apps in our lab environment (see Table 9).

Our test environment uses a machine running Ubuntu 20.04
with frida-tools [78] and mitmproxy [26], and a rooted Google
Pixel 4 running frida-server [78] on Android 12. The machine
hosts a Wi-Fi network to which the phone and the devices connect,
providing Internet connectivity through an Ethernet connection.
We bypass certificate pinning via Frida’s built-in scripting. We test
companion apps with two strategies: First, automatic inputs, we
test apps with the Application Exerciser Monkey (AME) [10] for
10 minutes or until they crash, whichever occurs first. We do not

https://github.com/SecPriv/iotflow/tree/main/scripts/evaluation/dfa


CCS ’23, November 26–30, 2023, Copenhagen, Denmark. David Schmidt, Carlotta Tagliaro, Kevin Borgolte, and Martina Lindorfer

Table 9: Tested Devices. The IoT devices that we tested dynam-

ically together with their device type and package name.

Device Type Package Name

Bose QC35 Headphones com.bose.monet
Divoom Timebox Alarm Clock com.divoom.Divoom
Fitbit Inspire 1 Smart Watch com.fitbit.FitbitMobile
Blaupunkt Smart Watch cn.xiaofengkj.fitpro
HHCC FlowerCare Plant Sensor com.huahuacaocao.flowercare
Hama WiFi Light Bulb com.hama.smart
Philips Hue Light Bulb com.signify.hue.blue
Ikea DIRIGERA Smart Hub com.ikea.tradfri.lighting
Anti-Lost Smart Tracker com.lenzetech.kindelf
LIFX A60 Light Bulb com.lifx.lifx
Nut Find3 Smart Tracker com.nut.blehunter
Soundcore Life Q35 Headphones com.oceanwing.soundcore
Wiz Colour Light Bulb com.tao.wiz

expect to trigger complex behavior of IoT devices (e.g., because it
would require us to set up the device), but AME remains a common
testing technique [22] and we include it for completeness. Second,
manual inputs, we manually interact with each app for 30 minutes
and trigger all functionalities, including pairing and interacting
with IoT devices, changing their settings, etc. Indeed, we observed
significantly less traffic with AME than with manual interaction,
demonstrating the scalability issues of dynamic analysis.

From the observed traffic, we extract requests’ domain names,
which correspond to who receive data, and resource paths, which
correspond to functionality (e.g., API endpoints). We match them
based on exact string equivalence exactly between IoTFlow and
dynamic analysis. Considering the configuration of our dynamic en-
vironment, we also manually match domains and paths by (a) iden-
tifying over-approximate placeholders, such as the device product
code, serial number, etc. and matching them to concrete dynamic
information, (b) generalizing the dynamic system configuration, like
language and locale, (c) grouping repeated dynamic data (as they
also do not provide new information in the dynamic analysis setting,
but provide a false sense of accuracy), and (d) resolving network-
level redirects (e.g., DNS-based or IP anycast). We remove analysis
artifacts that are clearly not related: (a) domains and resources that
were requested from outside of the IoT app, such as by the Android
operating system (e.g., background update checks), (b) domains and
resources that were requested by Android WebView components
unrelated to device behavior (e.g., opening a vendor’s online shop
website), and (c) invalid domain names. We retain all data that
cannot be clearly attributed to dynamic analysis artifacts, making
our results a lower-bound. Last, as we focus on IoT-related behavior,
we manually label data as related if it relates to IoT device behavior,
security, privacy, or data exchange. Our artifact provides further
details on the identified domains and paths, and their matching.3

IoTFlow extracted 214 domains from the 13 companion apps,
with a minimum of 3 domains, an average of 16.46 domains, and
a maximum of 42 domains per app. With dynamic analysis, we
observed 218 domains, with a minimum of 1 domain, an average
of 16.77 domains, and a maximum of 48 domains per app. Between
static analysis and dynamic analysis, 36 domains match exactly and
we matched 7 additional domains manually.

3https://github.com/SecPriv/iotflow/tree/main/dynamic_analysis

We categorize all domains using our previous approach (see Sec-
tion 4.4). Table 5 summarizes our results and our artifact provides
further details.3 Notably, we find substantially more advertisement
domains via dynamic analysis than through IoTFlow. This is ex-
pected because of how modern ads are targeted and auctioned,
requiring dynamic information. IoTFlow only recovers the entry
point for ads, but this is actually sufficient to determine that they are
used. It also highlights an important issue: Considering all domains
gives a false sense of accuracy toward dynamic analysis, many of
which may not provide new insight. For example, while it confirms
our findings of extensive tracking in IoT apps, the IKEA companion
app contacts 48 domains in total, but it also contacted 20 advertising
domains and four social network domains.

Focusing on certainly IoT domains, IoTFlow and dynamic anal-
ysis share 21 domains across all apps (min 0, avg 1.62, max 5), IoT-
Flow identified 33 domains that dynamic analysismissed (0/2.54/10),
and dynamic analysis found 19 unique domains (0/1.46/4). That is,
IoTFlow performs better than or equal to dynamic analysis for
9/13 devices and worse for only 4/13 devices (Fitbit smart watch,
Hama light bulb, Soundcore headphones, and Wiz light bulb). For
2/4 of these apps, Fitbit and Wiz, IoTFlow correctly identifies the
effective TLD of all domains we observed dynamically, that is, the
operator, but it missed some subdomains. For Hama, it misses four
IoT endpoints that we saw dynamically, likely because the device is
a rebranded IoT device. For Soundcore, it misses one dynamically
generated domain pointing to the device’s most recent firmware.

Beyond domains, we also compare requests’ paths. It allows us
to assess which approach is more promising to comprehensively
understand IoT device behavior, meaning if one discovers more IoT-
related functionality or if they identify distinct (overlapping) sets
of behavior. Both approaches identified the same 50 IoT-related
paths over all 13 apps (min 0, avg 3.85, max 17). We statically
identified an additional 231 IoT-related paths (min 0, avg 17.77,
max 45) and 496 general paths (min 2, avg 38.15, max 77). Dynamic
analysis found 110 unique IoT-related paths (min 0, avg 8.46, max
32) and 337 general paths (min 1, avg 25.92, max 54). For three
apps (Fitbit, Hue, and Wiz), our static analysis performs worse.
Fitbit and Wiz use annotations to construct paths, which we cannot
analyze, a limitation we share with state of the art (see Section 6).
For Hue, our approach extracts 2 IoT-related path, while we observe
3 paths dynamically. IoTFlow performs better or equal for 10/13
apps, with a factor of at least 1.14x (Divoom, 41 vs. 36) and up to
31x (Flowercare, 31 vs. 1). For the IKEA app, dynamic analysis did
not find any IoT-related paths, while IoTFlow found 45 paths.

Overall, IoTFlow performs better than dynamic analysis and
extracts more IoT-related behavior statically from companion apps
than dynamic analysis (54 domains and 281 paths vs. 40 domains
and 160 paths) for most apps (9/13), it performs comparable for one
app, and it performs slightly worse for the remaining apps (3/13).

IoTFlow Findings. Taking an in-depth look into IoTFlow’s secu-
rity and privacy findings for the 13 apps, we find that:

• 8/13 apps send information via unencrypted HTTP to third
parties, which an attacker could eavesdrop on or modify (e.g., if
they are on the network path or the same wireless network). If
unencrypted data is used to configure or update the device, then
taking over control could be possible [68]. The NUT Find3 item

https://github.com/SecPriv/iotflow/tree/main/dynamic_analysis


IoTFlow: Inferring IoT Device Behavior at Scale through Static Mobile Companion App Analysis CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

tracker retrieves notifications over unencrypted HTTP, which
can allow an attacker to modify a user’s notification (e.g., to show
that a lost item was found and where or that it has moved away).

• 5/13 apps use hard-coded symmetric encryption keys (e.g., for
AES), which allows attackers to eavesdrop on their communica-
tion and can allow them to impersonate the remote end (e.g., to
push configurations or updates by extracting the keys from the
companion app) [67, 69].

• 2/13 apps send the hardware identifiers (IMEI) to countries out-
side of the EU, that is, outside of the GDPR region (onemight send
it to Russia and one to China to a remote endpoint that indicates
tracking), using an API that is deprecated (see Section 4.5.2).

• 5/13 apps, while less critical, use country-level location informa-
tion and send this to remote endpoints.

• No apps use hard-coded authentication credentials, but this does
not imply that they are secure because they might not use any
authentication at all.

6 LIMITATIONS AND FUTUREWORK

IoTFlow has limitations inherent to static analyses. Additionally,
we utilize the existing frameworks Soot and FlowDroid, and we
inherit their limitations. For example, our resilience to obfuscation
is limited, which can affect signature-based identification of sources
and sinks. We find that they are only a minor share for companion
apps (2.66% obfuscated). However, they are more prevalent for
general-purpose apps (10.81% obfuscated) based on an APKiD [37]
analysis of our datasets. Obfuscation is also an orthogonal problem,
and new deobfuscation techniques can readily be adopted. Similarly,
we focus our analysis on the Dalvik bytecode of apps, that is, we
do not support native code. We currently do not consider code
annotations, which the retrofit library uses to specify request paths
and network methods. Both techniques are infrequently used, and
not tackling them is a limitation we share with prior work, as
existing frameworks struggle to support them, and the required
engineering effort to support them is substantial.

Our DFA supports ICC, but our VSA does not. We plan to extend
ICC support to VSA in future work. Only 2.01% of reconstructed
values contain ICC data, which does not invalidate our results.
Currently, we limit ICC tracking to the same app, but theoretically,
ICC can cross app boundaries or come from websites via deep links,
providing further avenues for collusion.

For our analysis, we limit the number of backward steps and set
a timeout, which trades between precision and resources but could
lead to missing values and flows. We empirically determined our
thresholds and other limits could yield more precise results.

Motivated by our results on certificate pinning and abandoned
domains, we aim to study how companion apps evolve over time.
Naturally, identifying network endpoints, protocols, and APIs is
only the first step toward truly understanding the security and
privacy of device-to-cloud communication in the IoT ecosystem.

7 RELATEDWORK

Following, we compare IoTFlow to related work in IoT security,
IoT companion app analysis, and general-purpose app analysis.

IoT Security. Prior work in IoT security largely focused on identi-
fying attacks on a small set of devices. Wood et al. [96] investigated

how medical IoT devices communicate and transmit data, and they
found them leaking information, like the measurement frequency,
despite using encryption. Chu et al. [23] discovered kids’ devices
sending PII over unencrypted connections. Other work [13, 20, 38,
65, 93] focused on Samsung’s SmartThings apps. SmartThings is
a smart hub ecosystem unifying the control of compatible devices
and allows event flow graphs, which are conceptually simple [64].
In contrast, IoTFlow analyzes arbitrary Android apps, which are
more widespread and significantly more complex. Correspondingly,
their techniques do not readily transfer to the entire IoT ecosystem.
Related work also investigated the ecosystem via crowd-sourced
network traffic collection [46] or telemetry data [53] of real-world
user devices, which raises ethical and anonymization challenges.

IoT Companion App Analysis. Different work investigated IoT
companion apps in combination with physical devices [21, 61, 80, 81]
to find security and privacy issues. For example, Zhou et al. [100]
studied the interactions between IoT devices, cloud, and apps using
state machines and found issues that can lead to device hijacking.
However, they require the IoT devices, which prevents scalability.
We overcome this limitation with our new static analysis approach
design. Wang et al. [94] analyzed companion apps without the
corresponding device. Instead of analyzing and determining how
and with whom the apps communicate, as we do, they focused
on identifying re-branding and propagation of known vulnerabil-
ities. That is, they require prior domain knowledge about other
devices and existing vulnerabilities. Similarly, Jin et al. [50] aimed
to identify companion apps at scale, and then to identify known
vulnerabilities in the apps, such as outdated library versions. Nan et
al. [62] analyzed IoT apps with machine learning to detect code that
handles IoT-related data, and then assessed whether the behavior
was communicated to the user. Naturally, their statistical machine
learning approach fundamentally differs from our static program
analysis approach. Other work [85, 86, 99, 102] aims to find BLE
issues in mobile apps. IoTFlow is more general as we investigate
communication beyond BLE, thus obtaining a better understanding
of a greater part of the IoT ecosystem.

General-purpose App Analysis. Understanding general-purpose
mobile apps has seen significant work. Some approaches use dy-
namic analysis to run apps in controlled environments to observe
their (network) behavior and endpoints [25, 57, 58, 75, 79, 82]. As
we observed, the provided inputs impact the analysis, which is an
ongoing research challenge [19, 22, 43]. Moreover, to adopt these
approaches, one would need the actual IoT devices, making large-
scale analysis infeasible. Several approaches extract information
about apps through static analysis techniques, like VSA or flow anal-
ysis, such as network endpoints, API keys, protocol commands, etc.
Gadient et al. [39] extract URLs and JSON schemas to studyHTTP(S)
usage, private APIs, and code injection vulnerabilities. Extracto-
col [51] reconstructs HTTP requests based on data flow analysis
for automated protocol analysis, but does not scale. Stringoid [77]
simulates string concatenations, but cannot reconstruct URLs built
in other ways, such as okhttp3.HttpUrl.Builder. Leakscope [101]
reconstructs API keys in mobile apps. Zuo et al. [102] reconstructed
BLE UUIDs to identify vulnerable implementations of its pairing
process. Wen et al. [95] reconstructed Controller Area Network
(CAN) bus commands.



CCS ’23, November 26–30, 2023, Copenhagen, Denmark. David Schmidt, Carlotta Tagliaro, Kevin Borgolte, and Martina Lindorfer

8 CONCLUSION

We introduced IoTFlow, a new technique for the large-scale secu-
rity and privacy analysis of IoT devices through their companion
apps. With Value Set Analysis (VSA), we extract network endpoints
and protocols, which enables us to characterize IoT device behavior
for local app-to-device communication and remote communication
with cloud backends without requiring the physical IoT device.
By cleverly combining VSA with Data-flow Analysis (DFA), we
trace data flows from IoT devices and sensitive Android methods
to understand better what data companion apps share and how.
Leveraging IoTFlow, we analyzed 9,889 companion apps and 947
general-purpose apps. We identified striking differences between
the two types of apps and discovered various security and privacy
problems in the IoT ecosystem, such as abandoned domains, hard-
coded credentials, expired certificates, or use of broken encryption
algorithms. Our approach shows clear promise for identifying secu-
rity and privacy issues of IoT devices at scale and it could be used
to generate privacy labels or verify claimed behavior automatically.

ACKNOWLEDGMENTS

We thank Andrea Continella for providing valuable feedback on
an early draft of this paper. This material is based on research
supported by the Vienna Science and Technology Fund (WWTF)
and the City of Vienna [Grant ID: 10.47379/ICT19-056; Grant ID:
10.47379/ICT22-060], the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strat-
egy - EXC 2092 CASA - 390781972, and SBA Research (SBA-K1), a
COMET center funded by BMK, BMDW, and the state of Vienna.

REFERENCES

[1] N. Alexopoulos, M. Brack, J. P. Wagner, T. Grube, and M. Mühlhäuser. “How Long Do
Vulnerabilities Live in the Code? A Large-Scale Empirical Measurement Study on FOSS
Vulnerability Lifetimes”. In: 31st USENIX Security Symposium (USENIX Security). Aug. 2022.

[2] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. “AndroZoo: Collecting Millions of Android
Apps for the Research Community”. In: 13th International Conference on Mining Software
Repositories (MSR). May 2016. doi: 10.1145/2901739.2903508.

[3] Android Developers. Security with network protocols. Oct. 27, 2021. url: https://developer.
android.com/training/articles/security-ssl (visited on 10/07/2022).

[4] Android Developers. Android Keystore system. Oct. 7, 2022. url: https://developer.android.
com/training/articles/keystore (visited on 07/25/2023).

[5] Android Developers. Best practices for unique identifiers. May 22, 2023. url: https://developer.
android.com/training/articles/user-data-ids (visited on 07/25/2023).

[6] Android Developers. Bluetooth permissions. July 28, 2023. url: https://developer.android.
com/guide/topics/connectivity/bluetooth/permissions (visited on 07/28/2023).

[7] Android Developers. Version your app. Apr. 12, 2023. url: https://developer.android.com/
studio/publish/versioning (visited on 04/27/2023).

[8] Android Developers. Work with data more securely. July 12, 2023. url: https://developer.
android.com/topic/security/data (visited on 07/25/2023).

[9] Android Developers. TelephonyManager. url: https://developer.android.com/reference/
android/telephony/TelephonyManager (visited on 07/13/2022).

[10] Android Developers. UI/Application Exerciser Monkey. url: https://developer.android.com/
studio/test/other-testing-tools/monkey (visited on 03/30/2022).

[11] AppBrain. Android network libraries. url: https://www.appbrain.com/stats/libraries/tag/
network/android-network-libraries (visited on 09/19/2021).

[12] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau, and P.
McDaniel. “FlowDroid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware
Taint Analysis for Android Apps”. In: 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation. June 2014. doi: 10.1145/2594291.2594299.

[13] L. Babun, Z. Berkay Celik, P. McDaniel, and S. Uluagac. “Real-time Analysis of Privacy-
(un)aware IoT Applications”. In: 21st Privacy Enhancing Technologies Symposium (PETS).
July 2021. doi: 10.2478/popets-2021-0009.

[14] M. Balossini and S. Arzt. GitHub FlowDroid Issue #578 – Flowdroid execution time. Feb. 16,
2023. url: https://github.com/secure-software-engineering/FlowDroid/issues/578 (visited
on 04/27/2023).

[15] E. Belinski. Android API Levels. Sept. 4, 2023. url: https : / / apilevels . com/ (visited on
09/08/2023).

[16] D. Boffey. EU Recalls Children’s Smartwatch over Data Fears. Feb. 5, 2019. url: https://www.
theguardian.com/technology/2019/feb/05/eu-recalls-childrens-smartwatch-over-data-
fears (visited on 01/30/2022).

[17] K. Borgolte, T. Fiebig, S. Hao, C. Kruegel, and G. Vigna. “Cloud Strife: Mitigating the Security
Risks of Domain-Validated Certificates”. In: 25th Network and Distributed System Security
Symposium (NDSS). Feb. 2018. doi: 10.14722/ndss.2018.23327.

[18] K. Borgolte, S. Hao, T. Fiebig, and G. Vigna. “Enumerating Active IPv6 Hosts for Large-scale
Security Scans via DNSSEC-signed Reverse Zones”. In: 39th IEEE Symposium on Security &
Privacy (S&P). May 2018. doi: 10.1109/SP.2018.00027.

[19] P. Carter, C. Mulliner, M. Lindorfer, W. Robertson, and E. Kirda. “CuriousDroid: Automated
User Interface Interaction for Android Application Analysis Sandboxes”. In: International
Conference on Financial Cryptography and Data Security (FC). Feb. 2016. doi: 10.1007/978-3-
662-54970-4_13.

[20] Z. B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan, P. McDaniel, and A. S. Uluagac. “Sensitive
Information Tracking in Commodity IoT”. In: 27th USENIX Security Symposium (USENIX
Security). Aug. 2018. doi: 10.5555/3277203.3277329.

[21] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. Lau, M. Sun, R. Yang, and K. Zhang.
“IoTFuzzer: Discovering Memory Corruptions in IoT Through App-based Fuzzing”. In: 25th
Network and Distributed System Security Symposium (NDSS). Feb. 2018. doi: 10.14722/ndss.
2018.23159.

[22] S. R. Choudhary, A. Gorla, and A. Orso. “Automated Test Input Generation for Android:
Are We There Yet?” In: 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE). Nov. 2015. doi: 10.1109/ASE.2015.89.

[23] G. Chu, N. Apthorpe, and N. Feamster. “Security and Privacy Analyses of Internet of Things
Children’s Toys”. In: IEEE Internet of Things Journal 6.1 (Aug. 2019). doi: 10.1109/JIOT.2018.
2866423.

[24] K. Chung. Taking over a Dead IoT Company. Jan. 9, 2023. url: https://blog.kchung.co/taking-
over-a-dead-iot-company/ (visited on 02/05/2023).

[25] A. Continella, Y. Fratantonio, M. Lindorfer, A. Puccetti, A. Zand, C. Kruegel, and G. Vigna.
“Obfuscation-Resilient Privacy Leak Detection for Mobile Apps Through Differential Anal-
ysis”. In: 24th Network and Distributed System Security Symposium (NDSS). Feb. 2017. doi:
10.14722/ndss.2017.23465.

[26] A. Cortesi, D. Weinstein, D. Freed, T. Kriechaumer, P. F. Tirenna, M. Hils, and U. Verma.
mitmproxy - an interactive HTTPS proxy. v6.0.2. Jan. 21, 2021. url: https://mitmproxy.org/
(visited on 01/15/2022).

[27] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti. “A Large-scale Analysis of the
Security of Embedded Firmwares”. In: 23rd USENIX Security Symposium (USENIX Security).
Aug. 2014. doi: 10.5555/2671225.2671232.

[28] A. Desnos, G. Gueguen, S. Bachmann, and contributors. GitHub – Androguard - Android
Permissions. July 3, 2020. url: https://github.com/androguard/androguard/tree/master/
androguard/core/api_specific_resources/aosp_permissions (visited on 05/02/2023).

[29] F. Dhia and M. Dacier. “Zero Conf Protocols and Their Numerous Man in the Middle
(MITM) Attacks”. In: 15th IEEE Workshop on Offensive Technologies (WOOT). May 2021. doi:
10.1109/SPW53761.2021.00060.

[30] C. Dietrich, K. Krombholz, K. Borgolte, and T. Fiebig. “Investigating Operators’ Perspec-
tive on Security Misconfigurations”. In: 25th ACM SIGSAC Conference on Computer and
Communications Security (CCS). Oct. 2018. doi: 10.1145/3243734.3243794.

[31] Eclipse Foundation. Paho - Python Client. v1.5.1. Sept. 22, 2022. url: https://www.eclipse.
org/paho/index.php?page=clients/python/index.php (visited on 10/08/2022).

[32] P. Emami-Naeini, J. Dheenadhayalan, Y. Agarwal, and L. F. Cranor. “Which Privacy and
Security Attributes Most Impact Consumers’ Risk Perception and Willingness to Purchase
IoT Devices?” In: 42nd IEEE Symposium on Security & Privacy (S&P). May 2021. doi: 10.1109/
SP40001.2021.00112.

[33] P. Emami-Naeini, J. Dheenadhayalan, Y. Agarwal, and L. F. Cranor. “Are Consumers Willing
to Pay for Security and Privacy of IoT Devices?” In: 32nd USENIX Security Symposium
(USENIX Security). Aug. 2023. (Visited on 08/21/2023).

[34] I. Erben. Country CIDR IP Ranges. url: http : / /www . iwik . org / ipcountry/ (visited on
01/25/2022).

[35] European Parliament and the Council of the European Union. “Regulation (EU) 2016/679 of
the European Parliament and of the Council of 27 April 2016 on the protection of natural
persons with regard to the processing of personal data and on the free movement of such
data, and repealing Directive 95/46/EC (General Data Protection Regulation)”. In: Official
Journal of the European Union 59 (L119 May 4, 2016). url: http://data.europa.eu/eli/reg/
2016/679/oj (visited on 07/05/2021).

[36] Exodus. Trackers. url: https://reports.exodus- privacy.eu.org/en/trackers/ (visited on
02/23/2022).

[37] C. Fenton and contributors. GitHub – APKiD. Nov. 12, 2020. url: https : / /github.com/
rednaga/APKiD (visited on 01/29/2022).

[38] E. Fernandes, J. Jung, and A. Prakash. “Security Analysis of Emerging Smart Home Applica-
tions”. In: 1st IEEE European Symposium on Security & Privacy (EuroS&P). Mar. 2016. doi:
10.1109/SP.2016.44.

[39] P. Gadient, M. Ghafari, M.-A. Tarnutzer, and O. Nierstrasz. “Web APIs in Android through
the Lens of Security”. In: 27th IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER). Feb. 2020. doi: 10.1109/SANER48275.2020.9054850.

[40] Google. User Data. url: https://support.google.com/googleplay/android-developer/answer/
10144311 (visited on 07/25/2023).

[41] C. Han, I. Reyes, Á. Feal, J. Reardon, P. Wijesekera, N. Vallina-Rodriguez, A. Elazari, K. A.
Bamberger, and S. Egelman. “The Price is (Not) Right: Comparing Privacy in Free and
Paid Apps”. In: 20th Privacy Enhancing Technologies Symposium (PETS). July 2020. doi:
10.2478/popets-2020-0050.

[42] haxrob. Twitter - HaxRob - Lightbulb App. July 5, 2023. url: https://twitter.com/haxrob/
status/1676424071452708864 (visited on 07/25/2023).

[43] Y. He, L. Zhang, Z. Yang, Y. Cao, K. Lian, S. Li, W. Yang, Z. Zhang, M. Yang, Y. Zhang, and
H. Duan. “TextExerciser: Feedback-driven Text Input Exercising for Android Applications”.
In: 41st IEEE Symposium on Security & Privacy (S&P). May 2020. doi: 10.1109/SP40000.2020.
00071.

[44] G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song, and D. Wagner. “Smart Locks: Lessons
for Securing Commodity Internet of Things Devices”. In: 11th ACM ASIA Conference on
Computer and Communications Security (ASIACCS). Apr. 2016. doi: 10.1145/2897845.2897886.

[45] A. Holst. IoT Connected Devices Worldwide 2019-2030. Oct. 19, 2021. url: https://www.
statista.com/statistics/1183457/iot-connected-devices-worldwide/ (visited on 01/15/2022).

[46] D. Huang, N. Apthorpe, G. Acar, F. Li, and N. Feamster. “IoT Inspector: Crowdsourcing
Labeled Network Traffic from Smart Home Devices at Scale”. In: ACM International Joint
Conference on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT/Ubicomp).
June 2020. doi: 10.1145/3397333.

https://doi.org/10.47379/ICT19056
https://doi.org/10.47379/ICT22060
https://doi.org/10.1145/2901739.2903508
https://developer.android.com/training/articles/security-ssl
https://developer.android.com/training/articles/security-ssl
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/user-data-ids
https://developer.android.com/training/articles/user-data-ids
https://developer.android.com/guide/topics/connectivity/bluetooth/permissions
https://developer.android.com/guide/topics/connectivity/bluetooth/permissions
https://developer.android.com/studio/publish/versioning
https://developer.android.com/studio/publish/versioning
https://developer.android.com/topic/security/data
https://developer.android.com/topic/security/data
https://developer.android.com/reference/android/telephony/TelephonyManager
https://developer.android.com/reference/android/telephony/TelephonyManager
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/studio/test/other-testing-tools/monkey
https://www.appbrain.com/stats/libraries/tag/network/android-network-libraries
https://www.appbrain.com/stats/libraries/tag/network/android-network-libraries
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.2478/popets-2021-0009
https://github.com/secure-software-engineering/FlowDroid/issues/578
https://apilevels.com/
https://www.theguardian.com/technology/2019/feb/05/eu-recalls-childrens-smartwatch-over-data-fears
https://www.theguardian.com/technology/2019/feb/05/eu-recalls-childrens-smartwatch-over-data-fears
https://www.theguardian.com/technology/2019/feb/05/eu-recalls-childrens-smartwatch-over-data-fears
https://doi.org/10.14722/ndss.2018.23327
https://doi.org/10.1109/SP.2018.00027
https://doi.org/10.1007/978-3-662-54970-4_13
https://doi.org/10.1007/978-3-662-54970-4_13
https://doi.org/10.5555/3277203.3277329
https://doi.org/10.14722/ndss.2018.23159
https://doi.org/10.14722/ndss.2018.23159
https://doi.org/10.1109/ASE.2015.89
https://doi.org/10.1109/JIOT.2018.2866423
https://doi.org/10.1109/JIOT.2018.2866423
https://blog.kchung.co/taking-over-a-dead-iot-company/
https://blog.kchung.co/taking-over-a-dead-iot-company/
https://doi.org/10.14722/ndss.2017.23465
https://mitmproxy.org/
https://doi.org/10.5555/2671225.2671232
https://github.com/androguard/androguard/tree/master/androguard/core/api_specific_resources/aosp_permissions
https://github.com/androguard/androguard/tree/master/androguard/core/api_specific_resources/aosp_permissions
https://doi.org/10.1109/SPW53761.2021.00060
https://doi.org/10.1145/3243734.3243794
https://www.eclipse.org/paho/index.php?page=clients/python/index.php
https://www.eclipse.org/paho/index.php?page=clients/python/index.php
https://doi.org/10.1109/SP40001.2021.00112
https://doi.org/10.1109/SP40001.2021.00112
http://www.iwik.org/ipcountry/
http://data.europa.eu/eli/reg/2016/679/oj
http://data.europa.eu/eli/reg/2016/679/oj
https://reports.exodus-privacy.eu.org/en/trackers/
https://github.com/rednaga/APKiD
https://github.com/rednaga/APKiD
https://doi.org/10.1109/SP.2016.44
https://doi.org/10.1109/SANER48275.2020.9054850
https://support.google.com/googleplay/android-developer/answer/10144311
https://support.google.com/googleplay/android-developer/answer/10144311
https://doi.org/10.2478/popets-2020-0050
https://twitter.com/haxrob/status/1676424071452708864
https://twitter.com/haxrob/status/1676424071452708864
https://doi.org/10.1109/SP40000.2020.00071
https://doi.org/10.1109/SP40000.2020.00071
https://doi.org/10.1145/2897845.2897886
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://doi.org/10.1145/3397333


IoTFlow: Inferring IoT Device Behavior at Scale through Static Mobile Companion App Analysis CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

[47] IFTTT. If This Then That – Connect Your Apps. url: https://ifttt.com/ (visited on 07/24/2023).
[48] Internet Assigned Numbers Authority (IANA). Uniform Resource Identifier (URI) Schemes.

Jan. 28, 2022. url: https://www.iana.org/assignments/uri- schemes/uri- schemes.xhtml
(visited on 01/30/2022).

[49] Y. Jia, L. Xing, Y. Mao, D. Zhao, X. Wang, S. Zhao, and Y. Zhang. “Burglars’ IoT Paradise:
Understanding andMitigating Security Risks of GeneralMessaging Protocols on IoT Clouds”.
In: 41st IEEE Symposium on Security & Privacy (S&P). May 2020. doi: 10.1109/SP40000.2020.
00051.

[50] X. Jin, S. Manandhar, K. Kafle, Z. Lin, and A. Nadkarni. “Understanding IoT Security
from a Market-Scale Perspective”. In: 29th ACM SIGSAC Conference on Computer and
Communications Security (CCS). Nov. 2022. doi: 10.1145/3548606.3560640.

[51] J. Kim, H. Choi, H. Namkung,W. Choi, B. Choi, H. Hong, Y. Kim, J. Lee, and D. Han. “Enabling
Automatic Protocol Behavior Analysis for Android Applications”. In: 12th International on
Conference on Emerging Networking EXperiments and Technologies (CoNEXT). Dec. 2016.
doi: 10.1145/2999572.2999596.

[52] D. Kuchhal and F. Li. “Knock and Talk: Investigating Local Network Communications on
Websites”. In: 21st Internet Measurement Conference (IMC). Nov. 2021. doi: 10.1145/3487552.
3487857.

[53] D. Kumar, K. Shen, B. Case, D. Garg, G. Alperovich, D. Kuznetsov, R. Gupta, and Z.
Durumeric. “All Things Considered: AnAnalysis of IoTDevices onHomeNetworks”. In: 28th
USENIX Security Symposium (USENIX Security). Aug. 2019. doi: 10.5555/3361338.3361419.

[54] P. Lamkin. Report Claims Ring Employees Had Unfettered Access To Security Camera Footage.
Jan. 11, 2019. url: https : / /www . forbes . com / sites / paullamkin / 2019 / 01 / 11 / report -
claims-ring-employees-had-unfettered-access-to-security-camera-footage/ (visited on
07/30/2021).

[55] F. Li and V. Paxson. “A Large-Scale Empirical Study of Security Patches”. In: 24th ACM
SIGSAC Conference on Computer and Communications Security (CCS). Oct. 2017. doi: 10.
1145/3133956.3134072.

[56] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E. Bodden, D.
Octeau, and P. McDaniel. “IccTA: Detecting Inter-Component Privacy Leaks in Android
Apps”. In: 37th IEEE/ACM International Conference on Software Engineering (ICSE). May
2015. doi: 10.1109/ICSE.2015.48.

[57] M. Lindorfer, M. Neugschwandtner, and C. Platzer. “Marvin: Efficient and Comprehensive
Mobile App Classification Through Static and Dynamic Analysis”. In: Annual International
Computers, Software & Applications Conference (COMPSAC). July 2015. doi: 10.1109/COMPS
AC.2015.103.

[58] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio, V. van der Veen, and C.
Platzer. “Andrubis - 1,000,000 Apps Later: A View on Current Android Malware Behaviors”.
In: International Workshop on Building Analysis Datasets and Gathering Experience Returns
for Security (BADGERS). Sept. 2014. doi: 10.1109/BADGERS.2014.7.

[59] G. Lyon. Nmap: the Network Mapper. v7.80. Aug. 10, 2019. url: https://nmap.org/ (visited
on 03/30/2022).

[60] A. M. Mandalari, D. J. Dubois, R. Kolcun, M. T. Paracha, H. Haddadi, and D. Choffnes.
“Blocking Without Breaking: Identification and Mitigation of Non-Essential IoT Traffic”.
In: 21st Privacy Enhancing Technologies Symposium (PETS). July 2021. doi: 10.2478/popets-
2021-0075.

[61] D. Mauro Junior, L. Melo, H. Lu, M. d’Amorim, and A. Prakash. “A Study of Vulnerability
Analysis of Popular Smart Devices Through Their Companion Apps”. In: IEEE Workshop on
the Internet of Safe Things (SafeThings). May 23, 2019. doi: 10.1109/SPW.2019.00042.

[62] Y. Nan, X. Wang, L. Xing, X. Liao, R. Wu, J. Wu, Y. Zhang, and X. Wang. “Are You Spying
on Me? Large-Scale Analysis on IoT Data Exposure through Companion Apps”. In: 32nd
USENIX Security Symposium (USENIX Security). Aug. 2023.

[63] S. Neupane, F. Tazi, U. Paudel, F. V. Baez, M. Adamjee, L. De Carli, S. Das, and I. Ray. “On
the Data Privacy, Security, and Risk Postures of IoT Mobile Companion Apps”. In: 36th IFIP
Annual Conference on Data and Applications Security and Privacy (DBSec). July 2022. doi:
10.1007/978-3-031-10684-2_10.

[64] J. L. Newcomb, S. Chandra, J.-B. Jeannin, C. Schlesinger, and M. Sridharan. “IOTA: a calculus
for internet of things automation”. In: ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software (Onward!) Oct. 2017.
doi: 10.1145/3133850.3133860.

[65] D. T. Nguyen, C. Song, Z. Qian, S. V. Krishnamurthy, E. J. M. Colbert, and P. McDaniel.
“IotSan: Fortifying the Safety of IoT Systems”. In: 14th International on Conference on
Emerging Networking EXperiments and Technologies (CoNEXT). Dec. 2018. doi: 10.1145/
3281411.3281440.

[66] NicolasFNino and S. Arzt. GitHub FlowDroid Issue #601 – FlowDroid with EPICC. Apr. 5, 2023.
url: https://github.com/secure-software-engineering/FlowDroid/issues/601 (visited on
04/27/2023).

[67] NIST. CVE-2017-8866. Dec. 11, 2017. url: https://nvd.nist.gov/vuln/detail/CVE-2017-8866
(visited on 07/26/2023).

[68] NIST. CVE-2019-16732. Dec. 13, 2019. url: https://nvd.nist.gov/vuln/detail/CVE-2019-16732
(visited on 07/26/2023).

[69] NIST. CVE-2022-30271. Dec. 13, 2022. url: https://nvd.nist.gov/vuln/detail/CVE-2022-30271
(visited on 07/26/2023).

[70] F. R. Olivera. Maven Repository. url: https://mvnrepository.com/ (visited on 04/05/2023).
[71] B. Pan. GitHub – Dex2jar. v2.1. Oct. 29, 2021. url: https://github.com/pxb1988/dex2jar

(visited on 01/15/2022).
[72] M. T. Paracha, D. J. Dubois, N. Vallina-Rodriguez, and D. Choffnes. “IoTLS: Understanding

TLS Usage in Consumer IoT Devices”. In: 21st Internet Measurement Conference (IMC). Nov.
2021. doi: 10.1145/3487552.3487830.

[73] E. Pariwono, D. Chiba, M. Akiyama, and T. Mori. “Don’t ThrowMe Away: Threats Caused by
the Abandoned Internet Resources Used by Android Apps”. In: 13th ACMASIA Conference on
Computer and Communications Security (ASIACCS). June 2018. doi: 10.1145/3196494.3196554.

[74] S. Pletinckx, K. Borgolte, and T. Fiebig. “Out of Sight, Out of Mind: Detecting OrphanedWeb
Pages at Internet-Scale”. In: 28th ACM SIGSAC Conference on Computer and Communications
Security (CCS). Nov. 2021. doi: 10.1145/3460120.3485367.

[75] A. Pradeep, A. Feal, J. Gamba, A. Rao, M. Lindorfer, N. Vallina-Rodriguez, and D. Choffnes.
“Not Your Average App: A Large-scale Privacy Analysis of Android Browsers”. In: 23rd
Privacy Enhancing Technologies Symposium (PETS). July 2023. doi: 10.56553/popets-2023-
0003.

[76] A. Pradeep, M. T. Paracha, P. Bhowmick, A. Davanian, A. Razaghpanah, T. Chung, M.
Lindorfer, N. Vallina-Rodriguez, D. Levin, and D. Choffnes. “A Comparative Analysis of
Certificate Pinning in Android & iOS”. In: 22nd Internet Measurement Conference (IMC). Oct.
2022. doi: 10.1145/3517745.3561439.

[77] M. Rapoport, P. Suter, E. Wittern, O. Lhotak, and J. Dolby. “Who You Gonna Call? Analyzing
Web Requests in Android Applications”. In: 14th International Conference on Mining Software
Repositories (MSR). May 2017. doi: 10.1109/MSR.2017.11.

[78] O. A. V. Ravnås. Frida. v15.1.14. Dec. 9, 2021. url: https://frida.re/ (visited on 07/26/2023).
[79] A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez, S. Sundaresan,M. Allman, C. Kreibich,

and P. Gill. “Apps, Trackers, Privacy, and Regulators: A Global Study of the Mobile Tracking
Ecosystem”. In: 25th Network and Distributed System Security Symposium (NDSS). Feb. 2018.
doi: 10.14722/ndss.2018.23009.

[80] N. Redini, A. Continella, D. Das, G. De Pasquale, N. Spahn, A. Machiry, A. Bianchi, C.
Kruegel, and G. Vigna. “DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-
constrained Inputs for IoT Devices”. In: 40th IEEE Symposium on Security & Privacy (S&P).
May 2019. doi: 10.1109/SP40001.2021.00066.

[81] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and H. Haddadi. “Infor-
mation Exposure From Consumer IoT Devices: A Multidimensional, Network-Informed
Measurement Approach”. In: 19th Internet Measurement Conference (IMC). Oct. 2019. doi:
10.1145/3355369.3355577.

[82] J. Ren, M. Lindorfer, D. J. Dubois, A. Rao, D. Choffnes, and N. Vallina-Rodriguez. “Bug Fixes,
Improvements, ... and Privacy Leaks - A Longitudinal Study of PII Leaks Across Android
App Versions”. In: 25th Network and Distributed System Security Symposium (NDSS). Feb.
2018. doi: 10.14722/ndss.2018.23143.

[83] S. J. Saidi, S. Matic, O. Gasser, G. Smaragdakis, and A. Feldmann. “Deep Dive into the
IoT Backend Ecosystem”. In: 22nd Internet Measurement Conference (IMC). Oct. 2022. doi:
10.1145/3517745.3561431.

[84] Shodan. Shodan Search. url: https : / /www.shodan. io/search?query=has_screenshot :
true+port:554 (visited on 07/18/2022).

[85] P. Sivakumaran and J. Blasco. “A Study of the Feasibility of Co-located App Attacks against
BLE and a Large-Scale Analysis of the Current Application-Layer Security Landscape”.
In: 28th USENIX Security Symposium (USENIX Security). Aug. 2019. doi: 10.5555/3361338.
3361340.

[86] P. Sivakumaran, C. Zuo, Z. Lin, and J. Blasco. “Uncovering Vulnerabilities of Bluetooth Low
Energy IoT from Companion Mobile Apps with Ble-Guuide”. In: 18th ACM ASIA Conference
on Computer and Communications Security (ASIACCS). July 2023. doi: 10.1145/3579856.
3595806.

[87] V. Sivaraman, D. Chan, D. Earl, and R. Boreli. “Smart-Phones Attacking Smart-Homes”. In:
9th ACM Conference on Security & Privacy in Wireless and Mobile Networks (WISEC). July
2016. doi: 10.1145/2939918.2939925.

[88] C. Tagliaro, F. Hahn, R. Sepe, A. Aceti, and M. Lindorfer. “I Still Know What You Watched
Last Sunday: Privacy of the HbbTV Protocol in the European Smart TV Landscape”. In:
30th Network and Distributed System Security Symposium (NDSS). Feb. 2023. doi: 10.14722/
ndss.2023.24102.

[89] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and V. Sundaresan. “Optimizing
Java Bytecode Using the Soot Framework: Is It Feasible?” In: 9th Compiler Construction. Jan.
2000. doi: 10.1007/3-540-46423-9_2.

[90] N. Vallina-Rodriguez, J. Shah, A. Finamore, Y. Grunenberger, K. Papagiannaki, H. Haddadi,
and J. Crowcroft. “Breaking for Commercials: Characterizing Mobile Advertising”. In: 12th
Internet Measurement Conference (IMC). Nov. 2012. doi: 10.1145/2398776.2398812.

[91] J. Varmarken, H. Le, A. Shuba, A. Markopoulou, and Z. Shafiq. “The TV is Smart and Full
of Trackers: Measuring Smart TV Advertising and Tracking”. In: 20th Privacy Enhancing
Technologies Symposium (PETS). July 2020. doi: 10.2478/popets-2020-0021.

[92] J. Walton, J. Steven, J. Manico, K. Wall, R. Iramar, and contributors. Certificate and Public
Key Pinning. url: https://owasp.org/www-community/controls/Certificate_and_Public_
Key_Pinning (visited on 10/07/2022).

[93] Q. Wang, W. Ul Hassan, A. Bates, and C. A. Gunter. “Fear and Logging in the Internet of
Things”. In: 25th Network and Distributed System Security Symposium (NDSS). Feb. 2018.
doi: 10.14722/ndss.2018.23282.

[94] X. Wang, Y. Sun, S. Nanda, and X. Wang. “Looking from the Mirror: Evaluating IoT Device
Security through Mobile Companion Apps”. In: 28th USENIX Security Symposium (USENIX
Security). Aug. 2019. doi: 10.5555/3361338.3361418.

[95] H. Wen, Q. Zhao, Q. A. Chen, and Z. Lin. “Automated Cross-Platform Reverse Engineering
of CAN Bus Commands fromMobile Apps”. In: 27th Network and Distributed System Security
Symposium (NDSS). Feb. 2020. doi: 10.14722/ndss.2020.24231.

[96] D. Wood, N. Apthorpe, and N. Feamster. “Cleartext Data Transmissions in Consumer IoT
Medical Devices”. In:Workshop on Internet of Things Security and Privacy (IoT-S&P). Nov.
2017. doi: 10.1145/3139937.3139939.

[97] H. Xu, M. Yu, Y.Wang, Y. Liu, Q. Hou, Z. Ma, H. Duan, J. Zhuge, and B. Liu. “Trampoline Over
the Air: Breaking in IoT Devices ThroughMQTT Brokers”. In: 7th IEEE European Symposium
on Security & Privacy (EuroS&P). June 2022. doi: 10.1109/EuroSP53844.2022.00019.

[98] yokotayokota, S. Arzt, and J. Samhi. GitHub FlowDroid Issue #386 – Usage of IccTA in
Flowdroid. Sept. 13, 2021. url: https://github.com/secure-software-engineering/FlowDroid/
issues/386 (visited on 04/27/2023).

[99] Q. Zhao, C. Zuo, J. Blasco, and Z. Lin. “PeriScope: Comprehensive Vulnerability Analysis of
Mobile App-defined Bluetooth Peripherals”. In: 17th ACM ASIA Conference on Computer
and Communications Security (ASIACCS). May 2022. doi: 10.1145/3488932.3517410.

[100] W. Zhou, Y. Jia, Y. Yao, L. Zhu, L. Guan, Y. Mao, P. Liu, and Y. Zhang. “Discovering and
Understanding the Security Hazards in the Interactions between IoT Devices, Mobile Apps,
and Clouds on Smart Home Platforms”. In: 28th USENIX Security Symposium (USENIX
Security). Aug. 2019. doi: 10.5555/3361338.3361417.

[101] C. Zuo, Z. Lin, and Y. Zhang. “Why Does Your Data Leak? Uncovering the Data Leakage in
Cloud from Mobile Apps”. In: 40th IEEE Symposium on Security & Privacy (S&P). May 2019.
doi: 10.1109/SP.2019.00009.

[102] C. Zuo, H. Wen, Z. Lin, and Y. Zhang. “Automatic Fingerprinting of Vulnerable BLE IoT
Devices with Static UUIDs fromMobile Apps”. In: 26th ACM SIGSAC Conference on Computer
and Communications Security (CCS). Nov. 2019. doi: 10.1145/3319535.3354240.

https://ifttt.com/
https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
https://doi.org/10.1109/SP40000.2020.00051
https://doi.org/10.1109/SP40000.2020.00051
https://doi.org/10.1145/3548606.3560640
https://doi.org/10.1145/2999572.2999596
https://doi.org/10.1145/3487552.3487857
https://doi.org/10.1145/3487552.3487857
https://doi.org/10.5555/3361338.3361419
https://www.forbes.com/sites/paullamkin/2019/01/11/report-claims-ring-employees-had-unfettered-access-to-security-camera-footage/
https://www.forbes.com/sites/paullamkin/2019/01/11/report-claims-ring-employees-had-unfettered-access-to-security-camera-footage/
https://doi.org/10.1145/3133956.3134072
https://doi.org/10.1145/3133956.3134072
https://doi.org/10.1109/ICSE.2015.48
https://doi.org/10.1109/COMPSAC.2015.103
https://doi.org/10.1109/COMPSAC.2015.103
https://doi.org/10.1109/BADGERS.2014.7
https://nmap.org/
https://doi.org/10.2478/popets-2021-0075
https://doi.org/10.2478/popets-2021-0075
https://doi.org/10.1109/SPW.2019.00042
https://doi.org/10.1007/978-3-031-10684-2_10
https://doi.org/10.1145/3133850.3133860
https://doi.org/10.1145/3281411.3281440
https://doi.org/10.1145/3281411.3281440
https://github.com/secure-software-engineering/FlowDroid/issues/601
https://nvd.nist.gov/vuln/detail/CVE-2017-8866
https://nvd.nist.gov/vuln/detail/CVE-2019-16732
https://nvd.nist.gov/vuln/detail/CVE-2022-30271
https://mvnrepository.com/
https://github.com/pxb1988/dex2jar
https://doi.org/10.1145/3487552.3487830
https://doi.org/10.1145/3196494.3196554
https://doi.org/10.1145/3460120.3485367
https://doi.org/10.56553/popets-2023-0003
https://doi.org/10.56553/popets-2023-0003
https://doi.org/10.1145/3517745.3561439
https://doi.org/10.1109/MSR.2017.11
https://frida.re/
https://doi.org/10.14722/ndss.2018.23009
https://doi.org/10.1109/SP40001.2021.00066
https://doi.org/10.1145/3355369.3355577
https://doi.org/10.14722/ndss.2018.23143
https://doi.org/10.1145/3517745.3561431
https://www.shodan.io/search?query=has_screenshot:true+port:554
https://www.shodan.io/search?query=has_screenshot:true+port:554
https://doi.org/10.5555/3361338.3361340
https://doi.org/10.5555/3361338.3361340
https://doi.org/10.1145/3579856.3595806
https://doi.org/10.1145/3579856.3595806
https://doi.org/10.1145/2939918.2939925
https://doi.org/10.14722/ndss.2023.24102
https://doi.org/10.14722/ndss.2023.24102
https://doi.org/10.1007/3-540-46423-9_2
https://doi.org/10.1145/2398776.2398812
https://doi.org/10.2478/popets-2020-0021
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning
https://doi.org/10.14722/ndss.2018.23282
https://doi.org/10.5555/3361338.3361418
https://doi.org/10.14722/ndss.2020.24231
https://doi.org/10.1145/3139937.3139939
https://doi.org/10.1109/EuroSP53844.2022.00019
https://github.com/secure-software-engineering/FlowDroid/issues/386
https://github.com/secure-software-engineering/FlowDroid/issues/386
https://doi.org/10.1145/3488932.3517410
https://doi.org/10.5555/3361338.3361417
https://doi.org/10.1109/SP.2019.00009
https://doi.org/10.1145/3319535.3354240

	Abstract
	1 Introduction
	2 Motivation
	3 IoTFlow
	3.1 Value Set Analysis
	3.2 Data-Flow Analysis

	4 Insights into the IoT Ecosystem
	4.1 Dataset
	4.2 Performance
	4.3 How Companion Apps Communicate
	4.4 With Whom IoT Apps Communicate
	4.5 What Data Companion Apps Share

	5 IoTFlow vs. Dynamic Analysis
	6 Limitations and Future Work
	7 Related Work
	8 Conclusion

