
Martina Lindorfer Vienna University of Technology
Alessandro Di Federico Politecnico di Milano
Federico Maggi Politecnico di Milano
Paolo Milani Comparetti Vienna University of Technology, Lastline Inc.
Stefano Zanero Politecnico di Milano

Lines of Malicious Code: 
Insights Into the Malicious Software Industry"

Annual Computer Security Applications Conference, December 2012 1

State of Malware"

•  Underground economy of cybercrime: 
spam, identity theft, DoS, Fake AV scams, …"

•  Malicious software industry"
•  Arms race against security researchers"
•  Overwhelming amount of samples"

-  > 70,000/day in 2011 (PandaLabs)"
•  Need for analysis automation"
•  Limits of static/dynamic analysis"
•  Incremental updates of functionality"
•  Focus manual analysis on novel functionality"

Annual Computer Security Applications Conference, December 2012 2

Approach (1/2)"

•  Identify focus of development effort of malware
authors"

•  Take advantage of auto-update functionality in
malware"

•  Collect subsequent updates of malware variants"
•  Identify code changes between versions"
•  Identify evolution of functional components"

-  e.g. spam, Fake AV"
•  Estimate development effort"
•  Highlight significant code changes for further analysis"

"
"

Annual Computer Security Applications Conference, December 2012 3

Approach (2/2)"

•  Combination of static and dynamic analysis"
•  Builds upon REANIMATOR (Oakland 2010)"

-  “Identifying Dormant Functionality in Malware Programs”"
•  Run samples in sandbox"
•  Let samples connect to the C&C server to update"
•  Find differences in binary code"
•  Map differences in binary code to behavior"

•  BEAGLE"
-  16 malware samples from 11 families"
-  > 1,000 executions, 381 distinct binaries"

Annual Computer Security Applications Conference, December 2012 4

Outline"

•  BEAGLE!
-  Step 1: Execution Monitoring"
-  Step 2a: Binary Comparison"
-  Step 2b: Behavior Extraction"
-  Step 3: Semantic-Aware Comparison"

•  Experimental Results"

•  Conclusion"

Annual Computer Security Applications Conference, December 2012 5

BEAGLE"

Annual Computer Security Applications Conference, December 2012 6

Execution
Monitoring 1

2

3

x

Binary Comparison
011
0000101
1000100
1100011

011
0000101
1000100
1100011

011
0000101
1000100
1100011

Behavior Extraction

Semantic-
Aware

Comparison

Code Changes
Unpacked
Malware
Variants

System-Level
Activity

Behaviors

Evolutionary
changes

Update
Server

Step 1: Execution Monitoring"

•  Based on Anubis sandbox"
-  Logging of Native + Windows API, dynamic taint tracing"

•  Stateful analysis:"
-  Save analysis state (filesystem and registry changes)"
-  Restore analysis state"
-  Invoke persistence mechanism"

•  Logging of call stack for each API call"
•  Generic unpacker (dump memory)"
•  Output:"

-  Unpacked binaries"
-  System calls and taint dependencies"

Annual Computer Security Applications Conference, December 2012 7

Step 2a: Binary Comparison"

•  Input:"
-  Unpacked malware variants"

•  Preprocessing: Code whitelisting"
-  Generic unpacker dumps all memory"
-  Includes code injected into benign processes"
-  Includes DLLs loaded into malware’s address space"
-  Identify all code (EXE and DLL) from the clean image and

ignore it"

Annual Computer Security Applications Conference, December 2012 8

Step 2a: Binary Comparison"

•  Refined techniques of Kruegel et al. (RAID 2005)"
-  “Polymorphic Worm Detection Using Structural Information of

Executables”"
•  Color nodes in CFG based on classes of instructions"
•  Shared code = finding isomorphic k-node subgraphs"
•  Fingerprints = hash of normalized subgraphs"
•  Match fingerprints between malware versions"
•  Output:"

-  Shared/added/removed basic blocks "
-  Measure of code change (Jaccard Similarity): 

of shared BB over the total shared/added/removed BBs"

"
"
"

Annual Computer Security Applications Conference, December 2012 9

Step 2b: Behavior Extraction"

•  Input:"
-  System calls and taint dependencies from dynamic analysis "

•  Behavior = connected graph of system-level events"
-  Nodes = system calls"
-  Edges = data flow dependencies"

•  Define rules to detect high-level behaviors"
-  e.g. Download & Execute = data flow from network to a file

that is later executed"
-  Unlabeled: no high-level meaning"
-  Labeled: behavior matches known patterns"

•  Output:"
-  List of behaviors with responsible code"

"
Annual Computer Security Applications Conference, December 2012 10

Step 3: Semantic-Aware Comparison"

•  Input:"
-  Labeled & unlabeled behaviors"
-  Shared/added/removed BBs"
"

•  Map behavior to code "
-  Dynamic analysis at system call level"
-  Better scaling than instruction-level tracing"
-  Mapping at function-level granularity"
-  Locate function boundaries of addresses in call stack"

Annual Computer Security Applications Conference, December 2012 11

Step 3: Semantic-Aware Comparison"

•  Expansion of mapping:"
-  Statically identify code path between individual system calls "
-  Use call stack for each system call as landmark"

•  Dormant functionality:"
-  Locate fingerprints from active components in other executions"

•  Output:"
-  Evolutionary changes in functional components"

Annual Computer Security Applications Conference, December 2012 12

Outline"

•  BEAGLE"
-  Step 1: Execution Monitoring"
-  Step 2a: Binary Comparison"
-  Step 2b: Behavior Extraction"
-  Step 3: Semantic-Aware Comparison"

•  Experimental Results!

•  Conclusion"

Annual Computer Security Applications Conference, December 2012 13

Dataset (1/2)"

•  16 samples (11 families, 6 ZeuS)"
•  Sources: "

-  ZeuS Tracker"
-  Anubis (download & execute heuristics)"
-  Top threats from Microsoft Malware Protection Center"
"

•  September 2011 - April 2012"
•  15 minutes each, once a day"
•  1,023 executions of 381 distinct binaries"

Annual Computer Security Applications Conference, December 2012 14

Dataset (2/2)"

Annual Computer Security Applications Conference, December 2012 15

FAMILY NAME AND LABEL SOURCE 1ST DAY DAYS EXECUTIONS MD5S LIFESPAN

Banload TrojanDownloader:Win32/Banload.ADE (1) 2012-01-31 87 78 3 2.00/83.00/29.33/37.95
Cycbot Backdoor:Win32/Cycbot.G (1) 2011-09-15 73 73 69 1.00/73.00/2.04/8.60
Dapato Worm:Win32/Cridex.B (2) 2012-02-24 65 62 25 1.00/43.00/4.60/8.31
Gamarue Worm:Win32/Gamarue.B (2) 2012-02-10 78 77 19 1.00/76.00/8.47/16.44
GenericDownloader TrojanDownloader:Win32/Banload.AHC (1) 2012-01-31 82 79 5 2.00/69.00/16.80/26.16
GenericTrojan Worm:Win32/Vobfus.gen!S (1) 2012-02-07 76 73 55 1.00/44.00/2.71/6.32
Graftor TrojanDownloader:Win32/Grobim.C (1) 2012-02-17 37 39 22 1.00/17.00/6.00/5.53
Kelihos TrojanDownloader:Win32/Waledac.C (2) 2012-03-03 56 38 8 1.00/54.00/21.00/22.88
Llac Worm:Win32/Vobfus.gen!N (1) 2012-02-07 32 33 82 1.00/10.00/1.49/1.71
OnlineGames Worm:Win32/Taterf.D (1) 2011-09-02 87 80 47 1.00/38.00/3.94/7.28
ZeuS PWS:Win32/Zbot.gen!AF 1be8884c7210e94fe43edb7edebaf15f (3) 2012-02-09 79 78 6 1.00/78.00/26.67/28.70
ZeuS PWS:Win32/Zbot 9926d2c0c44cf0a54b5312638c28dd37 (3) 2012-02-15 74 73 4 1.00/50.00/18.50/19.63
ZeuS PWS:Win32/Zbot.gen!AF* c9667edbbcf2c1d23a710bb097cddbcc (3) 2012-02-23 66 63 6 1.00/36.00/11.00/13.43
ZeuS PWS:Win32/Zbot.gen!AF* dbedfd28de176cbd95e1cacdc1287ea8 (3) 2012-02-09 79 78 4 1.00/78.00/20.25/33.34
ZeuS PWS:Win32/Zbot.gen!AF* e77797372fbe92aa727cca5df414fc27 (3) 2012-02-10 79 77 5 1.00/77.00/16.20/30.40
ZeuS PWS:Win32/Zbot.gen!AF* f579baf33f1c5a09db5b7e3244f3d96f (3) 2012-03-03 57 55 11 1.00/30.00/5.64/9.75

Table 1: Dataset. The labels in the first columns are based on Microsoft AV naming convention. The MD5 column is the number of
distinct binaries encountered. Lifespan is the duration in days of the interval in which an MD5 was observed (min/max/mean/stdev).

We use the addresses in the call stack as landmarks this path should
traverse and in case the dynamic path cannot be resolved statically.
We tag all functions in the identified path as part of the behavior.

Working at function granularity is a design decision that trades
off some precision in delimiting functional components, to achieve
performance compatible with a large-scale experiment. As discussed
in §4.1, our modified sandbox logs events at the system API level.
Previous work that performed a similar mapping of behavior to code
at instruction granularity [28], on the other hand, relied on a sandbox
logging each executed basic block.

Behavior Evolution. The set of functions that implement a behavior
is a functional component of a malware instance. By comparing
the components that implement a behavior in successive versions
of a malware, we can observe the evolution of that functionality
over time. This allows us to get an idea of the development effort
involved in updating this functionality by measuring the amount of
new code, as well as quickly identifying significant updates to the
malicious functionality that may warrant further inspection. For this,
we apply the techniques discussed in §4.2 to successive versions of a
component, instead of considering entire unpacked binaries. Among
the versions of a component observed throughout our experiments,
we select the largest implementation by number of basic blocks and
call it the reference behavior.

Dormant Functionality. Like any dynamic code analysis approach,
a limitation of BEAGLE is incomplete code coverage. In a typical
execution, a malware sample will reveal only a fraction of the func-
tionality it is capable of: For instance, a bot will send SPAM only
if instructed to do so by the botnet’s C&C infrastructure. Thus,
the techniques described above will identify the presence of each
functional component only in some of a sample’s executions, even
though the code implementing the functionality is present through-
out our experiments. This limits our visibility in the component’s
evolution. In the limit, if a behavior is observed only once, we do not
see any evolution. To be able to track evolution in a more complete
way, we use the CFG fingerprints from §4.2 to identify a compo-
nent even in executions where it is dormant and the corresponding
behavior cannot be observed. For this, we identify the dormant com-
ponents by locating the functions in a sample that match fingerprints
from an active (non-dormant) component in another execution.

5. EXPERIMENTAL EVALUATION

5.1 Setup
We run BEAGLE on a desktop-class, dual-core machine with 4GB

of RAM, and execute each sample for 15 minutes approximately

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X = Fraction of added basic blocks

C
D

F(
X

)

(a) t �1 vs. t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X = Fraction of added basic blocks

C
D

F(
X

)

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

(b) t0 vs. t

Figure 3: CDF of added basic blocks per family. Day-to-day
changes (a) are concentrated around low values for all the fam-
ilies, whereas in the long run (b) each family evolves distinc-
tively, showing different development efforts.

once a day, depending on the workload of the sandbox. Each analy-
sis continues from the state of the previous day’s execution in order
to analyze only the updated versions. Since we want to observe
malware updating itself, we cannot run it in a completely isolated
environment, but need to allow it to access the C&C infrastructure
from which to obtain updates. To prevent malware from causing
harm, we employ containment measures such as redirecting “dan-
gerous” protocols to a local honeypot and limiting bandwidth and
connections. These measures cannot guarantee that the malware we
run will never cause harm (0-day attacks are especially hard to rec-
ognize and block), but we believe that they are sufficient in practice
if combined with a prompt response to any abuse complaints (we did
not receive any complaints during the course of our experiments).

5.2 Dataset
We selected samples from three different sources: (1) Recent

submissions to Anubis for which the data flow detection of Jack-
straws [17] indicated download & execute behavior. (2) Malware
variants from the top threats according to the Microsoft Malware
Protection Center [2] (3) ZeuS samples from ZeuS Tracker [3].
We then discarded samples that showed no update activity in our
environment.

As summarized in Tab. 4.3, we analyzed the evolution of 16 sam-
ples from 11 families between September 2011 and April 2012. We
stopped the analysis and discarded a sample after it failed to contact
its C&C server for more than two weeks. Overall, we analyzed a
total of 1,023 executions of 381 distinct malware binaries.

Behaviors in Dataset"

Annual Computer Security Applications Conference, December 2012 16

Overall Code Changes"

FAMILY NAME AND LABEL SOURCE 1ST DAY DAYS EXECUTIONS MD5S LIFESPAN

Banload TrojanDownloader:Win32/Banload.ADE (1) 2012-01-31 87 78 3 2.00/83.00/29.33/37.95
Cycbot Backdoor:Win32/Cycbot.G (1) 2011-09-15 73 73 69 1.00/73.00/2.04/8.60
Dapato Worm:Win32/Cridex.B (2) 2012-02-24 65 62 25 1.00/43.00/4.60/8.31
Gamarue Worm:Win32/Gamarue.B (2) 2012-02-10 78 77 19 1.00/76.00/8.47/16.44
GenericDownloader TrojanDownloader:Win32/Banload.AHC (1) 2012-01-31 82 79 5 2.00/69.00/16.80/26.16
GenericTrojan Worm:Win32/Vobfus.gen!S (1) 2012-02-07 76 73 55 1.00/44.00/2.71/6.32
Graftor TrojanDownloader:Win32/Grobim.C (1) 2012-02-17 37 39 22 1.00/17.00/6.00/5.53
Kelihos TrojanDownloader:Win32/Waledac.C (2) 2012-03-03 56 38 8 1.00/54.00/21.00/22.88
Llac Worm:Win32/Vobfus.gen!N (1) 2012-02-07 32 33 82 1.00/10.00/1.49/1.71
OnlineGames Worm:Win32/Taterf.D (1) 2011-09-02 87 80 47 1.00/38.00/3.94/7.28
ZeuS PWS:Win32/Zbot.gen!AF 1be8884c7210e94fe43edb7edebaf15f (3) 2012-02-09 79 78 6 1.00/78.00/26.67/28.70
ZeuS PWS:Win32/Zbot 9926d2c0c44cf0a54b5312638c28dd37 (3) 2012-02-15 74 73 4 1.00/50.00/18.50/19.63
ZeuS PWS:Win32/Zbot.gen!AF* c9667edbbcf2c1d23a710bb097cddbcc (3) 2012-02-23 66 63 6 1.00/36.00/11.00/13.43
ZeuS PWS:Win32/Zbot.gen!AF* dbedfd28de176cbd95e1cacdc1287ea8 (3) 2012-02-09 79 78 4 1.00/78.00/20.25/33.34
ZeuS PWS:Win32/Zbot.gen!AF* e77797372fbe92aa727cca5df414fc27 (3) 2012-02-10 79 77 5 1.00/77.00/16.20/30.40
ZeuS PWS:Win32/Zbot.gen!AF* f579baf33f1c5a09db5b7e3244f3d96f (3) 2012-03-03 57 55 11 1.00/30.00/5.64/9.75

Table 1: Dataset. The labels in the first columns are based on Microsoft AV naming convention. The MD5 column is the number of
distinct binaries encountered. Lifespan is the duration in days of the interval in which an MD5 was observed (min/max/mean/stdev).

We use the addresses in the call stack as landmarks this path should
traverse and in case the dynamic path cannot be resolved statically.
We tag all functions in the identified path as part of the behavior.

Working at function granularity is a design decision that trades
off some precision in delimiting functional components, to achieve
performance compatible with a large-scale experiment. As discussed
in §4.1, our modified sandbox logs events at the system API level.
Previous work that performed a similar mapping of behavior to code
at instruction granularity [28], on the other hand, relied on a sandbox
logging each executed basic block.

Behavior Evolution. The set of functions that implement a behavior
is a functional component of a malware instance. By comparing
the components that implement a behavior in successive versions
of a malware, we can observe the evolution of that functionality
over time. This allows us to get an idea of the development effort
involved in updating this functionality by measuring the amount of
new code, as well as quickly identifying significant updates to the
malicious functionality that may warrant further inspection. For this,
we apply the techniques discussed in §4.2 to successive versions of a
component, instead of considering entire unpacked binaries. Among
the versions of a component observed throughout our experiments,
we select the largest implementation by number of basic blocks and
call it the reference behavior.

Dormant Functionality. Like any dynamic code analysis approach,
a limitation of BEAGLE is incomplete code coverage. In a typical
execution, a malware sample will reveal only a fraction of the func-
tionality it is capable of: For instance, a bot will send SPAM only
if instructed to do so by the botnet’s C&C infrastructure. Thus,
the techniques described above will identify the presence of each
functional component only in some of a sample’s executions, even
though the code implementing the functionality is present through-
out our experiments. This limits our visibility in the component’s
evolution. In the limit, if a behavior is observed only once, we do not
see any evolution. To be able to track evolution in a more complete
way, we use the CFG fingerprints from §4.2 to identify a compo-
nent even in executions where it is dormant and the corresponding
behavior cannot be observed. For this, we identify the dormant com-
ponents by locating the functions in a sample that match fingerprints
from an active (non-dormant) component in another execution.

5. EXPERIMENTAL EVALUATION

5.1 Setup
We run BEAGLE on a desktop-class, dual-core machine with 4GB

of RAM, and execute each sample for 15 minutes approximately

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X = Fraction of added basic blocks

C
D

F(
X

)

(a) t �1 vs. t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X = Fraction of added basic blocks

C
D

F(
X

)

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

ZeuS (2nd variant)

Gamarue

(b) t0 vs. t

Figure 3: CDF of added basic blocks per family. Day-to-day
changes (a) are concentrated around low values for all the fam-
ilies, whereas in the long run (b) each family evolves distinc-
tively, showing different development efforts.

once a day, depending on the workload of the sandbox. Each analy-
sis continues from the state of the previous day’s execution in order
to analyze only the updated versions. Since we want to observe
malware updating itself, we cannot run it in a completely isolated
environment, but need to allow it to access the C&C infrastructure
from which to obtain updates. To prevent malware from causing
harm, we employ containment measures such as redirecting “dan-
gerous” protocols to a local honeypot and limiting bandwidth and
connections. These measures cannot guarantee that the malware we
run will never cause harm (0-day attacks are especially hard to rec-
ognize and block), but we believe that they are sufficient in practice
if combined with a prompt response to any abuse complaints (we did
not receive any complaints during the course of our experiments).

5.2 Dataset
We selected samples from three different sources: (1) Recent

submissions to Anubis for which the data flow detection of Jack-
straws [17] indicated download & execute behavior. (2) Malware
variants from the top threats according to the Microsoft Malware
Protection Center [2] (3) ZeuS samples from ZeuS Tracker [3].
We then discarded samples that showed no update activity in our
environment.

As summarized in Tab. 4.3, we analyzed the evolution of 16 sam-
ples from 11 families between September 2011 and April 2012. We
stopped the analysis and discarded a sample after it failed to contact
its C&C server for more than two weeks. Overall, we analyzed a
total of 1,023 executions of 381 distinct malware binaries.

Annual Computer Security Applications Conference, December 2012 18

Code Changes: Zeus"

 0

 0.2

 0.4

 0.6

 0.8

 1

02/1802/2503/0303/1003/1703/2403/3104/0704/1404/2104/2805/05

A
m

o
u

n
t

o
f

co
d

e,
 n

o
rm

al
iz

ed
 i

n
 [

0
,1

]

Added code
Removed code

Shared code

Annual Computer Security Applications Conference, December 2012 19

Code Changes: Zeus"

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

02/1802/2503/0303/1003/1703/2403/3104/0704/1404/2104/2805/05

#
B

a
s
ic

 b
lo

c
k
s

New code

Annual Computer Security Applications Conference, December 2012 20

Behavior Evolution: Gamarue"

Low
ering

Security
Settings.

W
e

currently
detectthree

typesofbe-
haviors

thatlow
era

system
’s

security
settings:

the
creation

of
new

W
indow

sfirew
all’srulesorattem

ptsto
disable

itcom
pletely

(FIREWALL_SETTINGS),registry
m

odificationsthatdisable
Inter-

net
Explorer’s

phishing
filter

(IE_SECURITY_SETTINGS),and
changesto

a
system

security
policy

thatclassifiesexecutablesas
low

risk
file

types
w

hen
dow

nloading
them

from
the

Internetor
opening

em
ailattachm

ents
(CHANGE_SECURITY_POLICIES).

M
iscellaneous.

W
e

also
detecta

num
berofsim

ple
behaviors

that
have

self-explanatory
labels:

INJECT_CODE,
START_SERVICE,

EXECUTE_TEMP_FILE,ENUMERATE_PROCESSES
and

DOWNLOAD_
FILE.

U
npacking.

To
identify

a
m

alw
are’s

unpacking
code

(UNPACKER),
w

edo
notrely

on
behaviorrulesasw

edo
forotherlabels.Instead,

w
e

assum
e

thatallcode
found

in
the

originalm
alw

are
binary

before
unpacking

is
partofthe

unpacking
behavior.The

reason
is

thatm
alw

are
authors

use
packing

to
hide

as
m

uch
as

possible
of

their
softw

are
from

analysis
and

detection:
Thus,allother

functionality
is

typically
found

inside
the

packing
layer.

The
firstcolum

n
of

Tab.2
show

s
the

percentage
of

a
sam

ple’s
overallcode

thatistagged
w

ith
any

behavior(labeled
orunlabeled).

This
is

allthe
code

thatis
responsible

for
any

observed
behavior,

and
is

a
m

easure
of

the
code

coverage
of

our
dynam

ic
analysis.

O
verallcoverage

is
relatively

low
,w

hich
confirm

s
the

difficulty
of

perform
ing

a
com

plete
dynam

ic
analysis.The

second
colum

n
show

the
percentage

thatis
tagged

w
ith

a
labeled

behavior;Thatis,code
to

w
hich

w
e

w
ere

able
to

attribute
a

high-levelpurpose.
Except

forone
outlier(Dapato,at40.9%

)the
labeled

code
is

on
average

73.4%
�

99.91%
ofthe

totaltagged
code.Thisshow

sthatB
E

A
G

L
E

w
as

able
to

assign
m

ostexecuted
code

to
a

functionalcom
ponent.

5.7
Behavior

Evolution
W

ith
the

techniquesdiscussed
in

§4.4,B
E

A
G

L
E

isable
to

m
onitor

the
evolution

ofeach
ofthe

detected
behaviors

across
successive

m
alw

are
versions.Foreach

functionalcom
ponentsthatim

plem
ents

a
behavior,B

E
A

G
L

E
can

produce
results

sim
ilarto

those
presented

forthe
overallm

alw
are

code
in

Table
2

and
in

Figures2
and

3.D
ue

to
space

lim
itations,w

e
can

presenthere
only

a
sm

allsam
ple

of
these

results.
To

presentthe
evolution

of
behaviors,w

e
focus

on
the

sim
ilarity

(as
defined

in
Eq.(1))betw

een
each

version
ofthe

behaviorand
the

reference
behavior.A

s
discussed

in
Section

4.4,
the

reference
behavioris

the
largestim

plem
entation

ofa
behavior

by
num

ber
of

basic
blocks,across

a
m

alw
are’s

versions.
W

hile
this

does
notprovide

a
com

plete
picture

of
the

code’s
evolution,

it
gives

an
idea

of
how

each
behavior

grow
s

tow
ards

its
largest

im
plem

entation
(i.e.,the

reference
behavior).

Fig.5
show

s
the

sim
ilarity

overtim
e

ofeach
behaviorfound

in
ZeuS

(3
rd

variant)againstthe
respective

reference
behavior.This

show
s

the
contribution

ofeach
behaviorto

the
overallchanges.In-

terestingly,in
thisfam

ily
asw

ellasin
otherfam

ilies,w
e

notice
very

lim
ited

code
change

overall(firstplot).
H

ow
ever,the

breakdow
n

revealssom
e

significantchangestow
ardsthe

end
ofthe

observation
w

indow
,

w
here

behaviors
such

as
TCP_CONNECTION,

DOWNLOAD_
INJECT

and
HTTP_REQUEST

change
theirsim

ilarity
w

ith
respectto

the
reference.

A
m

ore
com

pactrepresentation
ofthe

behavior“variability”
is

exem
plified

in
Fig.5,w

hich
show

s
the

boxplotdistribution
ofthe

sim
ilarity

ofeach
behavioragainstthe

respective
reference

behav-
ior.In

the
fam

ily
underexam

ination,w
hich

is
Gamarue,behaviors

such
as

DOWNLOAD_EXECUTE,
UDP_TRAFFIC,and

DOWNLOAD_FILE
alm

ostneverchange,exceptforsom
e

outliers(em
pty

circles).O
ther

behaviors,instead,exhibitm
ore

variance,w
hich

m
eans

thattheir

 0
.2

 0
.4

 0
.6

 0
.8

H
T

T
P

_
R

E
Q

U
E

S
T

 0
.2

 0
.4

 0
.6

 0
.8

U
D

P
_

T
R

A
F

F
IC

 0
.2

 0
.4

 0
.6

 0
.8

E
X

E
C

U
T

E
_

T
E

M
P

_
F

IL
E

 0
.2

 0
.4

 0
.6

 0
.8

IE
_

S
E

C
U

R
IT

Y
_

S
E

T
T

IN
G

S

 0
.2

 0
.4

 0
.6

 0
.8

E
N

U
M

E
R

A
T

E
_

P
R

O
C

E
S

S
E

S

 0
.2

 0
.4

 0
.6

 0
.8

R
E

M
O

V
E

_
F

L
A

S
H

P
L

A
Y

E
R

_
F

IL
E

S

 0
.2

 0
.4

 0
.6

 0
.8

F
IR

E
W

A
L

L
_

S
E

T
T

IN
G

S

 0
.2

 0
.4

 0
.6

 0
.8

D
O

W
N

L
O

A
D

_
F

IL
E

 0
.2

 0
.4

 0
.6

 0
.8

IN
JE

C
T

_
C

O
D

E

 0
.2

 0
.4

 0
.6

 0
.8

A
U

T
O

_
S

T
A

R
T

 0
.2

 0
.4

 0
.6

 0
.8

D
O

W
N

L
O

A
D

_
IN

JE
C

T

 0
.2

 0
.4

 0
.6

 0
.8

T
C

P
_

C
O

N
N

E
C

T
IO

N

 0
.2

 0
.4

 0
.6

 0
.8

Similarity

T
im

e

O
v

erall lab
eled

 co
d

e

Figure
5:

ZeuS
(3 rd

variant):
Sim

ilarity
over

tim
e

ofeach
be-

havioragainsttherespectivereferencebehavior.Thefirsttim
e-

line
is

the
overallcode

sim
ilarity

w
ith

respectto
the

firstsam
-

ple
ofthatfam

ily.Thisplotshow
show

the
overallchangesare

broke
dow

n
into

changes
in

the
single

behaviors.
W

e
found

analogouspatternsalso
in

G
am

arue
(om

itted
for

space
lim

its).
●● ●●●

●

● ●●●●●

● ●●●●
●

●

●

DOWNLOAD_EXECUTE

CHANGE_SECURITY_POLICIES

UDP_TRAFFIC

DISABLE_TASKMGR

SPAM

HTTP_REQUEST

DOWNLOAD_FILE

DNS_QUERY

HIDE_STARTMENU

HIDE_FILES

UNPACKER

AUTO_START

0.0 0.2 0.4 0.6 0.8 1.0

Figure
6:

G
am

arue:
D

istribution
ofthe

sim
ilarity

ofeach
be-

havior
against

the
respective

reference
behavior.

Each
box

m
arksthe

0%
-,25%

-and
75%

-,100%
-quantiles,and

the
m

e-
dian.The

circlesindicate
the

outliers.

code
is

changed
often,

corresponding
to

a
proportionally

larger
developm

enteffort.

5.8
LinesofM

aliciousC
ode

Throughout
our

evaluation,
w

e
have

used
basic

blocks
as

the
unitof

m
easurem

entfor
code,w

hereas
itw

ould
be

m
ore

useful
to

quantify
the

m
alw

are
developm

ent
effort

in
term

s
of

lines
of

m
alicious

code.
U

nfortunately,
directly

m
easuring

the
Lines

of

Annual Computer Security Applications Conference, December 2012 21

Evaluation Results"

•  Core insights"
-  Frequency of code changes"
-  Most actively developed components"
-  Overall amount of development effort"
"

•  Some families more actively developed than others"
•  Incremental updates reuse most of the code"
•  Peaks of new code added"
•  Pinpoint changes over individual behaviors"
•  Pinpoint changes over the whole dataset"

Annual Computer Security Applications Conference, December 2012 22

Lines of Malicious Code"

•  Estimation of development effort:"
-  Amount of source code for observed changes"

•  Blocks of ASM, not LoC in source"
•  ZeuS + 150 bots with source code:"

-  50-100 LoC/basic block"
-  14.64 LoC/basic block for ZeuS"

•  Significant effort of development in malware"
-  Zeus: 140-180 new (peak 9,000) LoC"
-  Other: 100-300 new (peak 4,600-9,000) LoC"

Annual Computer Security Applications Conference, December 2012 23

Outline"

•  BEAGLE"
-  Step 1: Execution Monitoring"
-  Step 2a: Binary Comparison"
-  Step 2b: Behavior Extraction"
-  Step 3: Semantic-Aware Comparison"

•  Experimental Results"

•  Conclusion!

Annual Computer Security Applications Conference, December 2012 24

Limitations"

•  Unpacking (multi-layer or emulation-based packing)"
•  Dynamic analysis evasion"
•  Limited code coverage"
•  Semantics of code changes (human analysis)"

•  Future work:"
-  Patch analysis techniques to understand how the update of

a component changes the functionality"
-  Automatic classification of high-level behaviors"

Annual Computer Security Applications Conference, December 2012 25

Conclusion"

•  Combination of static and dynamic analysis to track
evolution of malware"

•  Measure code changes between malware versions"
•  Associate observed behavior with implementing

components"
•  Measure evolution of individual components"
•  Highlight interesting code changes for manual

inspection"
•  Insights on the development efforts in malicious code"

Annual Computer Security Applications Conference, December 2012 26

27

Questions?"
"

mlindorfer@iseclab.org"
http://www.iseclab.org/people/mlindorfer"

Annual Computer Security Applications Conference, December 2012

